This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | ||
| abelthlem6.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) | ||
| Assertion | abelthlem6 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | |
| 8 | abelthlem6.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) | |
| 9 | 8 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 10 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 12 | 11 | sumeq2sdv | ⊢ ( 𝑥 = 𝑋 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 13 | sumex | ⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V | |
| 14 | 12 6 13 | fvmpt | ⊢ ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 15 | 9 14 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 16 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 17 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 18 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) | |
| 19 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑛 ) ) | |
| 20 | 18 19 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 21 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) | |
| 22 | ovex | ⊢ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V | |
| 23 | 20 21 22 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 25 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 26 | 5 | ssrab3 | ⊢ 𝑆 ⊆ ℂ |
| 27 | 26 9 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 28 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) | |
| 29 | 27 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) |
| 30 | 25 29 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 31 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) | |
| 32 | 31 19 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 33 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) | |
| 34 | ovex | ⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V | |
| 35 | 32 33 34 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 37 | 16 17 25 | serf | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ∈ ℂ ) |
| 39 | 38 29 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 40 | 1 2 3 4 5 | abelthlem2 | ⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 41 | 40 | simprd | ⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 42 | 41 8 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 43 | 1 2 3 4 5 6 7 | abelthlem5 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 44 | 42 43 | mpdan | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 45 | 16 17 36 39 44 | isumclim2 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 46 | seqex | ⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V | |
| 47 | 46 | a1i | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V ) |
| 48 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 49 | 48 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 50 | oveq1 | ⊢ ( 𝑘 = 𝑖 → ( 𝑘 − 1 ) = ( 𝑖 − 1 ) ) | |
| 51 | 50 | oveq2d | ⊢ ( 𝑘 = 𝑖 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝑖 − 1 ) ) ) |
| 52 | 51 | sumeq1d | ⊢ ( 𝑘 = 𝑖 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) |
| 53 | oveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑖 ) ) | |
| 54 | 52 53 | oveq12d | ⊢ ( 𝑘 = 𝑖 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 55 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) | |
| 56 | ovex | ⊢ ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V | |
| 57 | 54 55 56 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 59 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 0 ... ( 𝑖 − 1 ) ) ∈ Fin ) | |
| 60 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 61 | elfznn0 | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑚 ∈ ℕ0 ) | |
| 62 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) | |
| 63 | 60 61 62 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 64 | 59 63 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 65 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) | |
| 66 | 27 65 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
| 67 | 64 66 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
| 68 | 58 67 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 69 | 17 | peano2zd | ⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℤ ) |
| 70 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 71 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 72 | 71 | fveq2i | ⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 73 | 70 72 | eqtri | ⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 74 | 73 | eleq2i | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 75 | nnm1nn0 | ⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) | |
| 76 | 75 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 77 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ) | |
| 78 | oveq2 | ⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) | |
| 79 | 77 78 | oveq12d | ⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) |
| 80 | 79 | oveq2d | ⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 81 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) | |
| 82 | ovex | ⊢ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ∈ V | |
| 83 | 80 81 82 | fvmpt | ⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 84 | 76 83 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 85 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 86 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 87 | 86 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 88 | nn0ex | ⊢ ℕ0 ∈ V | |
| 89 | 88 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V |
| 90 | 89 | shftval | ⊢ ( ( 1 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) ) |
| 91 | 85 87 90 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) ) |
| 92 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) | |
| 93 | 76 16 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 94 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 95 | elfznn0 | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) → 𝑚 ∈ ℕ0 ) | |
| 96 | 94 95 62 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 97 | 92 93 96 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ) |
| 98 | expm1t | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) | |
| 99 | 27 98 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
| 100 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℂ ) |
| 101 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( 𝑋 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) | |
| 102 | 27 75 101 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 103 | 100 102 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
| 104 | 99 103 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) |
| 105 | 97 104 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 106 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 107 | 106 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 108 | oveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) | |
| 109 | 108 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝑛 − 1 ) ) ) |
| 110 | 109 | sumeq1d | ⊢ ( 𝑘 = 𝑛 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) |
| 111 | 110 19 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 112 | ovex | ⊢ ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V | |
| 113 | 111 55 112 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 114 | 107 113 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 115 | ffvelcdm | ⊢ ( ( seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) | |
| 116 | 37 75 115 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 117 | 100 116 102 | mul12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 118 | 105 114 117 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 119 | 84 91 118 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 120 | 74 119 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 121 | 69 120 | seqfeq | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) = seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 122 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) | |
| 123 | 122 53 | oveq12d | ⊢ ( 𝑘 = 𝑖 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 124 | ovex | ⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V | |
| 125 | 123 33 124 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 126 | 125 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 127 | 37 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 128 | 127 66 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
| 129 | 126 128 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 130 | 123 | oveq2d | ⊢ ( 𝑘 = 𝑖 → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 131 | ovex | ⊢ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ∈ V | |
| 132 | 130 81 131 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 133 | 132 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 134 | 126 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 135 | 133 134 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) ) |
| 136 | 16 17 27 45 129 135 | isermulc2 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 137 | 0z | ⊢ 0 ∈ ℤ | |
| 138 | 1z | ⊢ 1 ∈ ℤ | |
| 139 | 89 | isershft | ⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ↔ seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 140 | 137 138 139 | mp2an | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ↔ seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 141 | 136 140 | sylib | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 142 | 121 141 | eqbrtrrd | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 143 | 16 49 68 142 | clim2ser2 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
| 144 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) ) | |
| 145 | 137 144 | ax-mp | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) |
| 146 | oveq1 | ⊢ ( 𝑘 = 0 → ( 𝑘 − 1 ) = ( 0 − 1 ) ) | |
| 147 | 146 | oveq2d | ⊢ ( 𝑘 = 0 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 0 − 1 ) ) ) |
| 148 | risefall0lem | ⊢ ( 0 ... ( 0 − 1 ) ) = ∅ | |
| 149 | 147 148 | eqtrdi | ⊢ ( 𝑘 = 0 → ( 0 ... ( 𝑘 − 1 ) ) = ∅ ) |
| 150 | 149 | sumeq1d | ⊢ ( 𝑘 = 0 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ∅ ( 𝐴 ‘ 𝑚 ) ) |
| 151 | sum0 | ⊢ Σ 𝑚 ∈ ∅ ( 𝐴 ‘ 𝑚 ) = 0 | |
| 152 | 150 151 | eqtrdi | ⊢ ( 𝑘 = 0 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = 0 ) |
| 153 | oveq2 | ⊢ ( 𝑘 = 0 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 0 ) ) | |
| 154 | 152 153 | oveq12d | ⊢ ( 𝑘 = 0 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( 0 · ( 𝑋 ↑ 0 ) ) ) |
| 155 | ovex | ⊢ ( 0 · ( 𝑋 ↑ 0 ) ) ∈ V | |
| 156 | 154 55 155 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) ) |
| 157 | 48 156 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) |
| 158 | 145 157 | eqtri | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) |
| 159 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝑋 ↑ 0 ) ∈ ℂ ) | |
| 160 | 27 48 159 | sylancl | ⊢ ( 𝜑 → ( 𝑋 ↑ 0 ) ∈ ℂ ) |
| 161 | 160 | mul02d | ⊢ ( 𝜑 → ( 0 · ( 𝑋 ↑ 0 ) ) = 0 ) |
| 162 | 158 161 | eqtrid | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = 0 ) |
| 163 | 162 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + 0 ) ) |
| 164 | 16 17 36 39 44 | isumcl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 165 | 27 164 | mulcld | ⊢ ( 𝜑 → ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 166 | 165 | addridd | ⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + 0 ) = ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 167 | 163 166 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 168 | 143 167 | breqtrd | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 169 | 16 17 129 | serf | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 170 | 169 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 171 | 16 17 68 | serf | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 172 | 171 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 173 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) | |
| 174 | 173 16 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 175 | simpl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝜑 ) | |
| 176 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... 𝑖 ) → 𝑛 ∈ ℕ0 ) | |
| 177 | 36 39 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 178 | 175 176 177 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 179 | 113 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 180 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 0 ... ( 𝑛 − 1 ) ) ∈ Fin ) | |
| 181 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 182 | 181 95 62 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 183 | 180 182 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 184 | 183 29 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 185 | 179 184 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 186 | 175 176 185 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 187 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) | |
| 188 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 189 | 188 16 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
| 190 | elfznn0 | ⊢ ( 𝑚 ∈ ( 0 ... 𝑛 ) → 𝑚 ∈ ℕ0 ) | |
| 191 | 181 190 62 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 192 | 187 189 191 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( 𝐴 ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) |
| 193 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑛 ) ) | |
| 194 | 189 191 193 | fsumm1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( 𝐴 ‘ 𝑚 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) ) |
| 195 | 192 194 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) ) |
| 196 | 195 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) = ( ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) ) |
| 197 | 183 25 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) = ( 𝐴 ‘ 𝑛 ) ) |
| 198 | 196 197 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) ) |
| 199 | 198 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 200 | 38 183 29 | subdird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 201 | 199 200 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 202 | 36 179 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 203 | 201 24 202 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) ) |
| 204 | 175 176 203 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) ) |
| 205 | 174 178 186 204 | sersub | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) − ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ) ) |
| 206 | 16 17 45 47 168 170 172 205 | climsub | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 207 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 208 | 207 27 164 | subdird | ⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 209 | 164 | mullidd | ⊢ ( 𝜑 → ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 210 | 209 | oveq1d | ⊢ ( 𝜑 → ( ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 211 | 208 210 | eqtrd | ⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 212 | 206 211 | breqtrrd | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 213 | 16 17 24 30 212 | isumclim | ⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 214 | 15 213 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |