This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abel's theorem. If the power series sum_ n e. NN0 A ( n ) ( x ^ n ) is convergent at 1 , then it is equal to the limit from "below", along a Stolz angle S (note that the M = 1 case of a Stolz angle is the real line [ 0 , 1 ] ). (Continuity on S \ { 1 } follows more generally from psercn .) (Contributed by Mario Carneiro, 2-Apr-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| Assertion | abelth | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | 1 2 3 4 5 6 | abelthlem4 | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 8 | 1 2 3 4 5 6 | abelthlem9 | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) |
| 9 | 1 2 3 4 5 | abelthlem2 | ⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 10 | 9 | simpld | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ 𝑆 ) |
| 12 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 13 | 11 12 | ovresd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 1 ( abs ∘ − ) 𝑦 ) ) |
| 14 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 15 | 5 | ssrab3 | ⊢ 𝑆 ⊆ ℂ |
| 16 | 15 12 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 17 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 18 | 17 | cnmetdval | ⊢ ( ( 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 1 − 𝑦 ) ) ) |
| 19 | 14 16 18 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 1 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 1 − 𝑦 ) ) ) |
| 20 | 13 19 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( abs ‘ ( 1 − 𝑦 ) ) ) |
| 21 | 20 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 ↔ ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 ) ) |
| 22 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 23 | 22 11 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
| 24 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 26 | 17 | cnmetdval | ⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 27 | 23 25 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 28 | 27 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ↔ ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) |
| 29 | 21 28 | imbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ↔ ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) ) |
| 30 | 29 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) ) |
| 31 | 30 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑟 ) ) ) |
| 32 | 8 31 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 34 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 35 | xmetres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ) | |
| 36 | 34 15 35 | mp2an | ⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) |
| 37 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) | |
| 38 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 39 | 38 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 40 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) | |
| 41 | 37 39 40 | metrest | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) ) |
| 42 | 34 15 41 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ) |
| 43 | 42 39 | metcnp | ⊢ ( ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( ∞Met ‘ 𝑆 ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ 𝑆 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
| 44 | 36 34 10 43 | mp3an12i | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( 1 ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) < 𝑤 → ( ( 𝐹 ‘ 1 ) ( abs ∘ − ) ( 𝐹 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
| 45 | 7 33 44 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → 𝑦 = 1 ) | |
| 48 | 47 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
| 49 | 46 48 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 = 1 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 50 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑦 ≠ 1 ) ) | |
| 51 | 9 | simprd | ⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 52 | abscl | ⊢ ( 𝑤 ∈ ℂ → ( abs ‘ 𝑤 ) ∈ ℝ ) | |
| 53 | 52 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
| 54 | 53 | a1d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → ( abs ‘ 𝑤 ) ∈ ℝ ) ) |
| 55 | absge0 | ⊢ ( 𝑤 ∈ ℂ → 0 ≤ ( abs ‘ 𝑤 ) ) | |
| 56 | 55 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → 0 ≤ ( abs ‘ 𝑤 ) ) |
| 57 | 56 | a1d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → 0 ≤ ( abs ‘ 𝑤 ) ) ) |
| 58 | 1 2 | abelthlem1 | ⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 60 | 53 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( abs ‘ 𝑤 ) ∈ ℝ* ) |
| 61 | 1re | ⊢ 1 ∈ ℝ | |
| 62 | rexr | ⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) | |
| 63 | 61 62 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → 1 ∈ ℝ* ) |
| 64 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 65 | eqid | ⊢ ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) | |
| 66 | eqid | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 67 | 65 1 66 | radcnvcl | ⊢ ( 𝜑 → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 68 | 64 67 | sselid | ⊢ ( 𝜑 → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 70 | xrltletr | ⊢ ( ( ( abs ‘ 𝑤 ) ∈ ℝ* ∧ 1 ∈ ℝ* ∧ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) → ( ( ( abs ‘ 𝑤 ) < 1 ∧ 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) → ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) | |
| 71 | 60 63 69 70 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( ( abs ‘ 𝑤 ) < 1 ∧ 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) → ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
| 72 | 59 71 | mpan2d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) |
| 73 | 54 57 72 | 3jcad | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) < 1 → ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑤 ) ∧ ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 74 | 0cn | ⊢ 0 ∈ ℂ | |
| 75 | 17 | cnmetdval | ⊢ ( ( 0 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 0 ( abs ∘ − ) 𝑤 ) = ( abs ‘ ( 0 − 𝑤 ) ) ) |
| 76 | 74 75 | mpan | ⊢ ( 𝑤 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑤 ) = ( abs ‘ ( 0 − 𝑤 ) ) ) |
| 77 | abssub | ⊢ ( ( 0 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( abs ‘ ( 0 − 𝑤 ) ) = ( abs ‘ ( 𝑤 − 0 ) ) ) | |
| 78 | 74 77 | mpan | ⊢ ( 𝑤 ∈ ℂ → ( abs ‘ ( 0 − 𝑤 ) ) = ( abs ‘ ( 𝑤 − 0 ) ) ) |
| 79 | subid1 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 − 0 ) = 𝑤 ) | |
| 80 | 79 | fveq2d | ⊢ ( 𝑤 ∈ ℂ → ( abs ‘ ( 𝑤 − 0 ) ) = ( abs ‘ 𝑤 ) ) |
| 81 | 76 78 80 | 3eqtrd | ⊢ ( 𝑤 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑤 ) = ( abs ‘ 𝑤 ) ) |
| 82 | 81 | breq1d | ⊢ ( 𝑤 ∈ ℂ → ( ( 0 ( abs ∘ − ) 𝑤 ) < 1 ↔ ( abs ‘ 𝑤 ) < 1 ) ) |
| 83 | 82 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( 0 ( abs ∘ − ) 𝑤 ) < 1 ↔ ( abs ‘ 𝑤 ) < 1 ) ) |
| 84 | 0re | ⊢ 0 ∈ ℝ | |
| 85 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) → ( ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑤 ) ∧ ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) | |
| 86 | 84 69 85 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ↔ ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑤 ) ∧ ( abs ‘ 𝑤 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 87 | 73 83 86 | 3imtr4d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℂ ) → ( ( 0 ( abs ∘ − ) 𝑤 ) < 1 → ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 88 | 87 | imdistanda | ⊢ ( 𝜑 → ( ( 𝑤 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑤 ) < 1 ) → ( 𝑤 ∈ ℂ ∧ ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) |
| 89 | 1xr | ⊢ 1 ∈ ℝ* | |
| 90 | elbl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 𝑤 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑤 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑤 ) < 1 ) ) ) | |
| 91 | 34 74 89 90 | mp3an | ⊢ ( 𝑤 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑤 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑤 ) < 1 ) ) |
| 92 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 93 | ffn | ⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) | |
| 94 | elpreima | ⊢ ( abs Fn ℂ → ( 𝑤 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑤 ∈ ℂ ∧ ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) | |
| 95 | 92 93 94 | mp2b | ⊢ ( 𝑤 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↔ ( 𝑤 ∈ ℂ ∧ ( abs ‘ 𝑤 ) ∈ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 96 | 88 91 95 | 3imtr4g | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑤 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) ) |
| 97 | 96 | ssrdv | ⊢ ( 𝜑 → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 98 | 51 97 | sstrd | ⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ) |
| 99 | 98 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 100 | 6 | reseq1i | ⊢ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) = ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) |
| 101 | difss | ⊢ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 | |
| 102 | resmpt | ⊢ ( ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 103 | 101 102 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 104 | 100 103 | eqtri | ⊢ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝑥 ∈ ( 𝑆 ∖ { 1 } ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 105 | 99 104 | eqtr4di | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) = ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ) |
| 106 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ dom abs | |
| 107 | 92 | fdmi | ⊢ dom abs = ℂ |
| 108 | 106 107 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ⊆ ℂ |
| 109 | 108 | sseli | ⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → 𝑥 ∈ ℂ ) |
| 110 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑗 ) ) | |
| 111 | oveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑗 ) ) | |
| 112 | 110 111 | oveq12d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
| 113 | 112 | cbvsumv | ⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) |
| 114 | 65 | pserval2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) = ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
| 115 | 114 | sumeq2dv | ⊢ ( 𝑥 ∈ ℂ → Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ‘ 𝑗 ) · ( 𝑥 ↑ 𝑗 ) ) ) |
| 116 | 113 115 | eqtr4id | ⊢ ( 𝑥 ∈ ℂ → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) ) |
| 117 | 109 116 | syl | ⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) ) |
| 118 | 117 | mpteq2ia | ⊢ ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑗 ∈ ℕ0 ( ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑥 ) ‘ 𝑗 ) ) |
| 119 | eqid | ⊢ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) = ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) | |
| 120 | eqid | ⊢ if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑣 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑣 ) + 1 ) ) = if ( sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ , ( ( ( abs ‘ 𝑣 ) + sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) / 2 ) , ( ( abs ‘ 𝑣 ) + 1 ) ) | |
| 121 | 65 118 1 66 119 120 | psercn | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) ) |
| 122 | rescncf | ⊢ ( ( 𝑆 ∖ { 1 } ) ⊆ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) ) | |
| 123 | 98 121 122 | sylc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ◡ abs “ ( 0 [,) sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑡 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑡 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) |
| 124 | 105 123 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) |
| 125 | 124 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) ) |
| 126 | 101 15 | sstri | ⊢ ( 𝑆 ∖ { 1 } ) ⊆ ℂ |
| 127 | ssid | ⊢ ℂ ⊆ ℂ | |
| 128 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) | |
| 129 | 38 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 130 | 129 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 131 | 38 128 130 | cncfcn | ⊢ ( ( ( 𝑆 ∖ { 1 } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 132 | 126 127 131 | mp2an | ⊢ ( ( 𝑆 ∖ { 1 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 133 | 125 132 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 134 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) | |
| 135 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑆 ∖ { 1 } ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) ∈ ( TopOn ‘ ( 𝑆 ∖ { 1 } ) ) ) | |
| 136 | 129 126 135 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) ∈ ( TopOn ‘ ( 𝑆 ∖ { 1 } ) ) |
| 137 | 136 | toponunii | ⊢ ( 𝑆 ∖ { 1 } ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) |
| 138 | 137 | cncnpi | ⊢ ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 139 | 133 134 138 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 140 | 38 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 141 | cnex | ⊢ ℂ ∈ V | |
| 142 | 141 15 | ssexi | ⊢ 𝑆 ∈ V |
| 143 | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) ) | |
| 144 | 140 101 142 143 | mp3an | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) |
| 145 | 144 | oveq1i | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) |
| 146 | 145 | fveq1i | ⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) |
| 147 | 139 146 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 148 | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) | |
| 149 | 140 142 148 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top |
| 150 | 149 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ) |
| 151 | 101 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ) |
| 152 | 10 | snssd | ⊢ ( 𝜑 → { 1 } ⊆ 𝑆 ) |
| 153 | 38 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 154 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 155 | 154 | sncld | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ 1 ∈ ℂ ) → { 1 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 156 | 153 14 155 | mp2an | ⊢ { 1 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 157 | 154 | restcldi | ⊢ ( ( 𝑆 ⊆ ℂ ∧ { 1 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ { 1 } ⊆ 𝑆 ) → { 1 } ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 158 | 15 156 157 | mp3an12 | ⊢ ( { 1 } ⊆ 𝑆 → { 1 } ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ) |
| 159 | 154 | restuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ⊆ ℂ ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 160 | 140 15 159 | mp2an | ⊢ 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 161 | 160 | cldopn | ⊢ ( { 1 } ∈ ( Clsd ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 162 | 152 158 161 | 3syl | ⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 163 | 160 | isopn3 | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ) → ( ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) = ( 𝑆 ∖ { 1 } ) ) ) |
| 164 | 149 101 163 | mp2an | ⊢ ( ( 𝑆 ∖ { 1 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) = ( 𝑆 ∖ { 1 } ) ) |
| 165 | 162 164 | sylib | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) = ( 𝑆 ∖ { 1 } ) ) |
| 166 | 165 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) ↔ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) ) |
| 167 | 166 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) ) |
| 168 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 169 | 160 154 | cnprest | ⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Top ∧ ( 𝑆 ∖ { 1 } ) ⊆ 𝑆 ) ∧ ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) ‘ ( 𝑆 ∖ { 1 } ) ) ∧ 𝐹 : 𝑆 ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
| 170 | 150 151 167 168 169 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐹 ↾ ( 𝑆 ∖ { 1 } ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ↾t ( 𝑆 ∖ { 1 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
| 171 | 147 170 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 172 | 50 171 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑦 ≠ 1 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 173 | 172 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑦 ≠ 1 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 174 | 49 173 | pm2.61dane | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 175 | 174 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 176 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 177 | 129 15 176 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) |
| 178 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑦 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) | |
| 179 | 177 129 178 | mp2an | ⊢ ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝑆 ⟶ ℂ ∧ ∀ 𝑦 ∈ 𝑆 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
| 180 | 7 175 179 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 181 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) | |
| 182 | 38 181 130 | cncfcn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 183 | 15 127 182 | mp2an | ⊢ ( 𝑆 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) |
| 184 | 180 183 | eleqtrrdi | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |