This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iserex.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| iserex.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| Assertion | iserex | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iserex.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | iserex.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 4 | seqeq1 | ⊢ ( 𝑁 = 𝑀 → seq 𝑁 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑁 = 𝑀 → ( seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 6 | 5 | bicomd | ⊢ ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) ) |
| 8 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → 𝜑 ) | |
| 9 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 12 | 11 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 16 | 15 | seqeq1d | ⊢ ( 𝜑 → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) = seq 𝑁 ( + , 𝐹 ) ) |
| 17 | 8 16 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) = seq 𝑁 ( + , 𝐹 ) ) |
| 18 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 19 | 18 1 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 𝑁 − 1 ) ∈ 𝑍 ) |
| 20 | 8 3 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 21 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 22 | climdm | ⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) | |
| 23 | 21 22 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 24 | 1 19 20 23 | clim2ser | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 25 | 17 24 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 26 | climrel | ⊢ Rel ⇝ | |
| 27 | 26 | releldmi | ⊢ ( seq 𝑁 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 28 | 25 27 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 30 | 29 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 1 ) ∈ 𝑍 ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → ( 𝑁 − 1 ) ∈ 𝑍 ) |
| 32 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → 𝜑 ) | |
| 33 | 32 3 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 34 | 32 16 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) = seq 𝑁 ( + , 𝐹 ) ) |
| 35 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 36 | climdm | ⊢ ( seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) ) | |
| 37 | 35 36 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑁 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) ) |
| 38 | 34 37 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) ) |
| 39 | 1 31 33 38 | clim2ser2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) + ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 40 | 26 | releldmi | ⊢ ( seq 𝑀 ( + , 𝐹 ) ⇝ ( ( ⇝ ‘ seq 𝑁 ( + , 𝐹 ) ) + ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 41 | 39 40 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 42 | 28 41 | impbida | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 43 | 42 | ex | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) ) |
| 44 | uzm1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 45 | 9 44 | syl | ⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 46 | 7 43 45 | mpjaod | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |