This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvgcmpce.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| cvgcmpce.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| cvgcmpce.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| cvgcmpce.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| cvgcmpce.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| cvgcmpce.6 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| cvgcmpce.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | cvgcmpce | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvgcmpce.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | cvgcmpce.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | cvgcmpce.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 4 | cvgcmpce.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 5 | cvgcmpce.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | cvgcmpce.6 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 7 | cvgcmpce.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) | |
| 8 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 11 | 1 10 4 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 13 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑚 = 𝑘 → ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 15 | eqid | ⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) | |
| 16 | ovex | ⊢ ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ∈ V | |
| 17 | 14 15 16 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 20 | 19 3 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 21 | 18 20 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 22 | 2fveq3 | ⊢ ( 𝑚 = 𝑘 → ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 23 | eqid | ⊢ ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) | |
| 24 | fvex | ⊢ ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ V | |
| 25 | 22 23 24 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 27 | 4 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 28 | 26 27 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 29 | 6 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 30 | climdm | ⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) | |
| 31 | 5 30 | sylib | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 32 | 3 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 33 | 1 10 29 31 32 18 | isermulc2 | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) ) |
| 34 | climrel | ⊢ Rel ⇝ | |
| 35 | 34 | releldmi | ⊢ ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ⇝ ( 𝐶 · ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 36 | 33 35 | syl | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 37 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 38 | 2 37 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 39 | 4 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 40 | 39 26 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 41 | 38 40 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 42 | 38 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 43 | 38 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 44 | 7 42 43 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( 𝐶 · ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 45 | 1 2 21 28 36 41 44 | cvgcmp | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 46 | 1 | climcau | ⊢ ( ( 𝑀 ∈ ℤ ∧ seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 47 | 10 45 46 | syl2anc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 48 | 1 10 28 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) : 𝑍 ⟶ ℝ ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) : 𝑍 ⟶ ℝ ) |
| 50 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
| 51 | 50 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ 𝑍 ) |
| 52 | 49 51 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 53 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ 𝑍 ) | |
| 54 | 49 53 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ∈ ℝ ) |
| 55 | 52 54 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ ) |
| 56 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ∈ ℝ ) | |
| 57 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
| 58 | 57 51 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 59 | 57 53 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
| 60 | 58 59 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ∈ ℂ ) |
| 61 | 60 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 62 | 60 | absge0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 63 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) | |
| 64 | difss | ⊢ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 ) | |
| 65 | ssfi | ⊢ ( ( ( 𝑀 ... 𝑛 ) ∈ Fin ∧ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ⊆ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin ) | |
| 66 | 63 64 65 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ∈ Fin ) |
| 67 | eldifi | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) | |
| 68 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝜑 ) | |
| 69 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 70 | 69 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 71 | 68 70 4 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 72 | 67 71 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 73 | 66 72 | fsumabs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 74 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 75 | 51 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 76 | 74 75 71 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
| 77 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 78 | 53 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 79 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 80 | 79 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 81 | 68 80 4 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 82 | 77 78 81 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 83 | 76 82 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
| 84 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ∈ Fin ) | |
| 85 | 84 81 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 86 | 66 72 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 87 | disjdif | ⊢ ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅ | |
| 88 | 87 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∩ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ∅ ) |
| 89 | undif2 | ⊢ ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) | |
| 90 | fzss2 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ) | |
| 91 | 90 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ) |
| 92 | ssequn1 | ⊢ ( ( 𝑀 ... 𝑗 ) ⊆ ( 𝑀 ... 𝑛 ) ↔ ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) ) | |
| 93 | 91 92 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑀 ... 𝑗 ) ∪ ( 𝑀 ... 𝑛 ) ) = ( 𝑀 ... 𝑛 ) ) |
| 94 | 89 93 | eqtr2id | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑀 ... 𝑛 ) = ( ( 𝑀 ... 𝑗 ) ∪ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) ) |
| 95 | 88 94 63 71 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 96 | 85 86 95 | mvrladdd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( 𝐺 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( 𝐺 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 97 | 83 96 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) |
| 98 | 97 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 99 | 70 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
| 100 | 99 25 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 101 | abscl | ⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) | |
| 102 | 101 | recnd | ⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 103 | 71 102 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 104 | 100 75 103 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) ) |
| 105 | 80 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 106 | 105 25 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 107 | 81 102 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 108 | 106 78 107 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) |
| 109 | 104 108 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 110 | 84 107 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 111 | 72 102 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 112 | 66 111 | fsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 113 | 88 94 63 103 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) + Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 114 | 110 112 113 | mvrladdd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) − Σ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 115 | 109 114 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑀 ... 𝑛 ) ∖ ( 𝑀 ... 𝑗 ) ) ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 116 | 73 98 115 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 117 | 56 61 55 62 116 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 118 | 55 117 | absidd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) = ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) |
| 119 | 118 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 ↔ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) ) |
| 120 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 121 | 120 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑥 ∈ ℝ ) |
| 122 | lelttr | ⊢ ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) | |
| 123 | 61 55 121 122 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) ≤ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ∧ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 124 | 116 123 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 125 | 119 124 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 126 | 125 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 127 | 126 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 128 | 127 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 129 | 128 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) − ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 130 | 47 129 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) < 𝑥 ) |
| 131 | seqex | ⊢ seq 𝑀 ( + , 𝐺 ) ∈ V | |
| 132 | 131 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ V ) |
| 133 | 1 12 130 132 | caucvg | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |