This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | ||
| Assertion | abelthlem8 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | |
| 8 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 9 | 0zd | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → 0 ∈ ℤ ) | |
| 10 | id | ⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ+ ) | |
| 11 | 3 4 | ge0p1rpd | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ+ ) |
| 12 | rpdivcl | ⊢ ( ( 𝑅 ∈ ℝ+ ∧ ( 𝑀 + 1 ) ∈ ℝ+ ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) | |
| 13 | 10 11 12 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) |
| 14 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) | |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
| 16 | 8 9 13 14 15 | climi0 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) |
| 17 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) |
| 18 | fzfid | ⊢ ( 𝜑 → ( 0 ... ( 𝑗 − 1 ) ) ∈ Fin ) | |
| 19 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 20 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑤 ) ∈ ℂ ) |
| 21 | 8 19 20 | serf | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 22 | elfznn0 | ⊢ ( 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) → 𝑖 ∈ ℕ0 ) | |
| 23 | ffvelcdm | ⊢ ( ( seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) | |
| 24 | 21 22 23 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 25 | 24 | abscld | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 26 | 18 25 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 28 | 24 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ) → 0 ≤ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) |
| 29 | 18 25 28 | fsumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → 0 ≤ Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) |
| 31 | 27 30 | ge0p1rpd | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ∈ ℝ+ ) |
| 32 | 17 31 | rpdivcld | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ∈ ℝ+ ) |
| 33 | 1 2 3 4 5 | abelthlem2 | ⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 34 | 33 | simpld | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
| 35 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) | |
| 36 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 37 | 1exp | ⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) | |
| 38 | 36 37 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 39 | 35 38 | sylan9eq | ⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) = 1 ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 41 | 40 | sumeq2dv | ⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 42 | sumex | ⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ∈ V | |
| 43 | 41 6 42 | fvmpt | ⊢ ( 1 ∈ 𝑆 → ( 𝐹 ‘ 1 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 44 | 34 43 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 45 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 46 | 45 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 47 | 46 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 48 | 46 45 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) ∈ ℂ ) |
| 49 | 8 19 47 48 7 | isumclim | ⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) = 0 ) |
| 50 | 44 49 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 0 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 1 ) = 0 ) |
| 52 | 51 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) = ( 0 − ( 𝐹 ‘ 𝑦 ) ) ) |
| 53 | df-neg | ⊢ - ( 𝐹 ‘ 𝑦 ) = ( 0 − ( 𝐹 ‘ 𝑦 ) ) | |
| 54 | 52 53 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 55 | 54 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ - ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 | 1 2 3 4 5 6 | abelthlem4 | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 57 | 56 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 58 | 57 | absnegd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ - ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 59 | 55 58 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 60 | 59 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 61 | 60 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 62 | fveq2 | ⊢ ( 𝑦 = 1 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 1 ) ) | |
| 63 | 62 50 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑦 = 1 ) → ( 𝐹 ‘ 𝑦 ) = 0 ) |
| 64 | 63 | abs00bd | ⊢ ( ( 𝜑 ∧ 𝑦 = 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 65 | 64 | ad5ant15 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 = 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 66 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → 𝑅 ∈ ℝ+ ) | |
| 67 | 66 | rpgt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → 0 < 𝑅 ) |
| 68 | 67 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 = 1 ) → 0 < 𝑅 ) |
| 69 | 65 68 | eqbrtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 = 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 70 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 71 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 72 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑀 ∈ ℝ ) |
| 73 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 0 ≤ 𝑀 ) |
| 74 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
| 75 | simprll | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑦 ∈ 𝑆 ) | |
| 76 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑦 ≠ 1 ) | |
| 77 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑦 ≠ 1 ) ) | |
| 78 | 75 76 77 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) |
| 79 | 13 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) |
| 80 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑗 ∈ ℕ0 ) | |
| 81 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) | |
| 82 | 2fveq3 | ⊢ ( 𝑘 = 𝑚 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) ) | |
| 83 | 82 | breq1d | ⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ↔ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) |
| 84 | 83 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) |
| 85 | 81 84 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) |
| 86 | simprlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) | |
| 87 | 2fveq3 | ⊢ ( 𝑖 = 𝑛 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) | |
| 88 | 87 | cbvsumv | ⊢ Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) = Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) |
| 89 | 88 | oveq1i | ⊢ ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) = ( Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) |
| 90 | 89 | oveq2i | ⊢ ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) = ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) |
| 91 | 86 90 | breqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) |
| 92 | 70 71 72 73 5 6 74 78 79 80 85 91 | abelthlem7 | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < ( ( 𝑀 + 1 ) · ( 𝑅 / ( 𝑀 + 1 ) ) ) ) |
| 93 | rpcn | ⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℂ ) | |
| 94 | 93 | adantl | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → 𝑅 ∈ ℂ ) |
| 95 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑀 + 1 ) ∈ ℝ+ ) |
| 96 | 95 | rpcnd | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑀 + 1 ) ∈ ℂ ) |
| 97 | 95 | rpne0d | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑀 + 1 ) ≠ 0 ) |
| 98 | 94 96 97 | divcan2d | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑀 + 1 ) · ( 𝑅 / ( 𝑀 + 1 ) ) ) = 𝑅 ) |
| 99 | 98 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( ( 𝑀 + 1 ) · ( 𝑅 / ( 𝑀 + 1 ) ) ) = 𝑅 ) |
| 100 | 92 99 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 101 | 100 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 ≠ 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 102 | 69 101 | pm2.61dane | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 103 | 61 102 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) |
| 104 | 103 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 105 | 104 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 106 | breq2 | ⊢ ( 𝑤 = ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 ↔ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) | |
| 107 | 106 | rspceaimv | ⊢ ( ( ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 108 | 32 105 107 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 109 | 16 108 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |