This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for absolute value. Proposition 10-3.7(h) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| abssubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | abstrid | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | abssubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | abstri | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( abs ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |