This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumrecl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumrecl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumrecl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | ||
| isumrecl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrecl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumrecl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumrecl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumrecl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | |
| 5 | isumrecl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 7 | 1 2 3 6 5 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 8 | 3 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 9 | 1 2 8 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 11 | 1 2 7 10 | climrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℝ ) |