This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| Assertion | fsumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 4 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 5 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 6 | 4 5 | sstri | ⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ℂ ) |
| 8 | ge0addcl | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 10 | elrege0 | ⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) | |
| 11 | 2 3 10 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 12 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 0 ∈ ( 0 [,) +∞ ) ) |
| 14 | 7 9 1 11 13 | fsumcllem | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 15 | elrege0 | ⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) ) | |
| 16 | 15 | simprbi | ⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,) +∞ ) → 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| 17 | 14 16 | syl | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |