This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums in the geometric series A ^ M + A ^ ( M + 1 ) ... converge to ( ( A ^ M ) / ( 1 - A ) ) . (Contributed by NM, 6-Jun-2006) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geolim.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| geolim.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | ||
| geolim2.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | ||
| geolim2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) | ||
| Assertion | geolim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geolim.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | geolim.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) | |
| 3 | geolim2.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| 4 | geolim2.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 5 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 6 | 3 | nn0zd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
| 8 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) | |
| 9 | 3 8 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 10 | 7 9 | expcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 11 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 12 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) | |
| 13 | ovex | ⊢ ( 𝐴 ↑ 𝑘 ) ∈ V | |
| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 15 | 9 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 16 | 15 4 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 17 | 6 16 | seqfeq | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) = seq 𝑀 ( + , 𝐹 ) ) |
| 18 | oveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑗 ) ) | |
| 19 | ovex | ⊢ ( 𝐴 ↑ 𝑗 ) ∈ V | |
| 20 | 18 12 19 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
| 22 | 1 2 21 | geolim | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) ) |
| 23 | seqex | ⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ V | |
| 24 | ovex | ⊢ ( 1 / ( 1 − 𝐴 ) ) ∈ V | |
| 25 | 23 24 | breldm | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 26 | 22 25 | syl | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 27 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 28 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) | |
| 29 | 1 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 30 | 21 29 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 31 | 27 3 30 | iserex | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ↔ seq 𝑀 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) ) |
| 32 | 26 31 | mpbid | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 33 | 17 32 | eqeltrrd | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 34 | 5 6 4 10 33 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) |
| 35 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 36 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 37 | 1 36 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 38 | 27 5 3 35 37 26 | isumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) |
| 39 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 40 | 27 39 35 37 22 | isumclim | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) = ( 1 / ( 1 − 𝐴 ) ) ) |
| 41 | 38 40 | eqtr3d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) = ( 1 / ( 1 − 𝐴 ) ) ) |
| 42 | 1re | ⊢ 1 ∈ ℝ | |
| 43 | 42 | ltnri | ⊢ ¬ 1 < 1 |
| 44 | fveq2 | ⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = ( abs ‘ 1 ) ) | |
| 45 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 46 | 44 45 | eqtrdi | ⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = 1 ) |
| 47 | 46 | breq1d | ⊢ ( 𝐴 = 1 → ( ( abs ‘ 𝐴 ) < 1 ↔ 1 < 1 ) ) |
| 48 | 43 47 | mtbiri | ⊢ ( 𝐴 = 1 → ¬ ( abs ‘ 𝐴 ) < 1 ) |
| 49 | 48 | necon2ai | ⊢ ( ( abs ‘ 𝐴 ) < 1 → 𝐴 ≠ 1 ) |
| 50 | 2 49 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 51 | 1 50 3 | geoser | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) |
| 52 | 51 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) = ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) |
| 53 | 41 52 | eqtr3d | ⊢ ( 𝜑 → ( 1 / ( 1 − 𝐴 ) ) = ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) |
| 54 | 53 | oveq1d | ⊢ ( 𝜑 → ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) = ( ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) ) |
| 55 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 56 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 57 | 1 3 | expcld | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 58 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 𝑀 ) ) ∈ ℂ ) | |
| 59 | 56 57 58 | sylancr | ⊢ ( 𝜑 → ( 1 − ( 𝐴 ↑ 𝑀 ) ) ∈ ℂ ) |
| 60 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) | |
| 61 | 56 1 60 | sylancr | ⊢ ( 𝜑 → ( 1 − 𝐴 ) ∈ ℂ ) |
| 62 | 50 | necomd | ⊢ ( 𝜑 → 1 ≠ 𝐴 ) |
| 63 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) | |
| 64 | 56 1 63 | sylancr | ⊢ ( 𝜑 → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 65 | 64 | necon3bid | ⊢ ( 𝜑 → ( ( 1 − 𝐴 ) ≠ 0 ↔ 1 ≠ 𝐴 ) ) |
| 66 | 62 65 | mpbird | ⊢ ( 𝜑 → ( 1 − 𝐴 ) ≠ 0 ) |
| 67 | 55 59 61 66 | divsubdird | ⊢ ( 𝜑 → ( ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) / ( 1 − 𝐴 ) ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) ) |
| 68 | nncan | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) → ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) = ( 𝐴 ↑ 𝑀 ) ) | |
| 69 | 56 57 68 | sylancr | ⊢ ( 𝜑 → ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) = ( 𝐴 ↑ 𝑀 ) ) |
| 70 | 69 | oveq1d | ⊢ ( 𝜑 → ( ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |
| 71 | 67 70 | eqtr3d | ⊢ ( 𝜑 → ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |
| 72 | 59 61 66 | divcld | ⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ∈ ℂ ) |
| 73 | 5 6 15 10 32 | isumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 74 | 72 73 | pncan2d | ⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) |
| 75 | 54 71 74 | 3eqtr3rd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |
| 76 | 34 75 | breqtrd | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |