This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| Assertion | abelthlem4 | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 8 | 0zd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℤ ) | |
| 9 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑛 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝑥 ↑ 𝑚 ) = ( 𝑥 ↑ 𝑛 ) ) | |
| 11 | 9 10 | oveq12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 12 | eqid | ⊢ ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) | |
| 13 | ovex | ⊢ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ∈ V | |
| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 16 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 17 | 16 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 18 | 5 | ssrab3 | ⊢ 𝑆 ⊆ ℂ |
| 19 | 18 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 20 | 19 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℂ ) |
| 21 | expcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) ∈ ℂ ) | |
| 22 | 20 21 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) ∈ ℂ ) |
| 23 | 17 22 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ∈ ℂ ) |
| 24 | 1 2 3 4 5 | abelthlem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → seq 0 ( + , ( 𝑚 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑥 ↑ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 25 | 7 8 15 23 24 | isumcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ∈ ℂ ) |
| 26 | 25 6 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |