This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isermulc2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isermulc2.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| isermulc2.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | ||
| isermulc2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| isermulc2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | isermulc2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ ( 𝐶 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isermulc2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isermulc2.4 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | isermulc2.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | |
| 5 | isermulc2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | isermulc2.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) | |
| 7 | seqex | ⊢ seq 𝑀 ( + , 𝐺 ) ∈ V | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ V ) |
| 9 | 1 2 5 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 11 | addcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 + 𝑥 ) ∈ ℂ ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 + 𝑥 ) ∈ ℂ ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
| 14 | adddi | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝐶 · ( 𝑘 + 𝑥 ) ) = ( ( 𝐶 · 𝑘 ) + ( 𝐶 · 𝑥 ) ) ) | |
| 15 | 14 | 3expb | ⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐶 · ( 𝑘 + 𝑥 ) ) = ( ( 𝐶 · 𝑘 ) + ( 𝐶 · 𝑥 ) ) ) |
| 16 | 13 15 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐶 · ( 𝑘 + 𝑥 ) ) = ( ( 𝐶 · 𝑘 ) + ( 𝐶 · 𝑥 ) ) ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 18 | 17 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 19 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 20 | 19 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 21 | 20 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 23 | 20 6 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 24 | 23 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 25 | 12 16 18 22 24 | seqdistr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) = ( 𝐶 · ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 26 | 1 2 4 3 8 10 25 | climmulc2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ ( 𝐶 · 𝐴 ) ) |