This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
||
| abelthlem6.1 | |- ( ph -> X e. ( S \ { 1 } ) ) |
||
| abelthlem7.2 | |- ( ph -> R e. RR+ ) |
||
| abelthlem7.3 | |- ( ph -> N e. NN0 ) |
||
| abelthlem7.4 | |- ( ph -> A. k e. ( ZZ>= ` N ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < R ) |
||
| abelthlem7.5 | |- ( ph -> ( abs ` ( 1 - X ) ) < ( R / ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) |
||
| Assertion | abelthlem7 | |- ( ph -> ( abs ` ( F ` X ) ) < ( ( M + 1 ) x. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
|
| 8 | abelthlem6.1 | |- ( ph -> X e. ( S \ { 1 } ) ) |
|
| 9 | abelthlem7.2 | |- ( ph -> R e. RR+ ) |
|
| 10 | abelthlem7.3 | |- ( ph -> N e. NN0 ) |
|
| 11 | abelthlem7.4 | |- ( ph -> A. k e. ( ZZ>= ` N ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < R ) |
|
| 12 | abelthlem7.5 | |- ( ph -> ( abs ` ( 1 - X ) ) < ( R / ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) |
|
| 13 | 1 2 3 4 5 6 | abelthlem4 | |- ( ph -> F : S --> CC ) |
| 14 | 8 | eldifad | |- ( ph -> X e. S ) |
| 15 | 13 14 | ffvelcdmd | |- ( ph -> ( F ` X ) e. CC ) |
| 16 | 15 | abscld | |- ( ph -> ( abs ` ( F ` X ) ) e. RR ) |
| 17 | ax-1cn | |- 1 e. CC |
|
| 18 | 1 2 3 4 5 6 7 8 | abelthlem7a | |- ( ph -> ( X e. CC /\ ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) ) |
| 19 | 18 | simpld | |- ( ph -> X e. CC ) |
| 20 | subcl | |- ( ( 1 e. CC /\ X e. CC ) -> ( 1 - X ) e. CC ) |
|
| 21 | 17 19 20 | sylancr | |- ( ph -> ( 1 - X ) e. CC ) |
| 22 | fzfid | |- ( ph -> ( 0 ... ( N - 1 ) ) e. Fin ) |
|
| 23 | elfznn0 | |- ( n e. ( 0 ... ( N - 1 ) ) -> n e. NN0 ) |
|
| 24 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 25 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 26 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
| 27 | 24 25 26 | serf | |- ( ph -> seq 0 ( + , A ) : NN0 --> CC ) |
| 28 | 27 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( seq 0 ( + , A ) ` n ) e. CC ) |
| 29 | expcl | |- ( ( X e. CC /\ n e. NN0 ) -> ( X ^ n ) e. CC ) |
|
| 30 | 19 29 | sylan | |- ( ( ph /\ n e. NN0 ) -> ( X ^ n ) e. CC ) |
| 31 | 28 30 | mulcld | |- ( ( ph /\ n e. NN0 ) -> ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC ) |
| 32 | 23 31 | sylan2 | |- ( ( ph /\ n e. ( 0 ... ( N - 1 ) ) ) -> ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC ) |
| 33 | 22 32 | fsumcl | |- ( ph -> sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC ) |
| 34 | 21 33 | mulcld | |- ( ph -> ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. CC ) |
| 35 | 34 | abscld | |- ( ph -> ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) e. RR ) |
| 36 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 37 | 10 | nn0zd | |- ( ph -> N e. ZZ ) |
| 38 | eluznn0 | |- ( ( N e. NN0 /\ n e. ( ZZ>= ` N ) ) -> n e. NN0 ) |
|
| 39 | 10 38 | sylan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. NN0 ) |
| 40 | fveq2 | |- ( k = n -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` n ) ) |
|
| 41 | oveq2 | |- ( k = n -> ( X ^ k ) = ( X ^ n ) ) |
|
| 42 | 40 41 | oveq12d | |- ( k = n -> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) = ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 43 | eqid | |- ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) = ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) |
|
| 44 | ovex | |- ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. _V |
|
| 45 | 42 43 44 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 46 | 39 45 | syl | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 47 | 39 31 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC ) |
| 48 | 1 2 3 4 5 | abelthlem2 | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 49 | 48 | simprd | |- ( ph -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 50 | 49 8 | sseldd | |- ( ph -> X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 51 | 1 2 3 4 5 6 7 | abelthlem5 | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |
| 52 | 50 51 | mpdan | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |
| 53 | 45 | adantl | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 54 | 53 31 | eqeltrd | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) e. CC ) |
| 55 | 24 10 54 | iserex | |- ( ph -> ( seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> <-> seq N ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) ) |
| 56 | 52 55 | mpbid | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |
| 57 | 36 37 46 47 56 | isumcl | |- ( ph -> sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC ) |
| 58 | 21 57 | mulcld | |- ( ph -> ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. CC ) |
| 59 | 58 | abscld | |- ( ph -> ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) e. RR ) |
| 60 | 35 59 | readdcld | |- ( ph -> ( ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) + ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) e. RR ) |
| 61 | peano2re | |- ( M e. RR -> ( M + 1 ) e. RR ) |
|
| 62 | 3 61 | syl | |- ( ph -> ( M + 1 ) e. RR ) |
| 63 | 9 | rpred | |- ( ph -> R e. RR ) |
| 64 | 62 63 | remulcld | |- ( ph -> ( ( M + 1 ) x. R ) e. RR ) |
| 65 | 1 2 3 4 5 6 7 8 | abelthlem6 | |- ( ph -> ( F ` X ) = ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 66 | 24 36 10 53 31 52 | isumsplit | |- ( ph -> sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) = ( sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) + sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 67 | 66 | oveq2d | |- ( ph -> ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) = ( ( 1 - X ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) + sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 68 | 21 33 57 | adddid | |- ( ph -> ( ( 1 - X ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) + sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) = ( ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 69 | 65 67 68 | 3eqtrd | |- ( ph -> ( F ` X ) = ( ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 70 | 69 | fveq2d | |- ( ph -> ( abs ` ( F ` X ) ) = ( abs ` ( ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) ) |
| 71 | 34 58 | abstrid | |- ( ph -> ( abs ` ( ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) <_ ( ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) + ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) ) |
| 72 | 70 71 | eqbrtrd | |- ( ph -> ( abs ` ( F ` X ) ) <_ ( ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) + ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) ) |
| 73 | 3 63 | remulcld | |- ( ph -> ( M x. R ) e. RR ) |
| 74 | 21 | abscld | |- ( ph -> ( abs ` ( 1 - X ) ) e. RR ) |
| 75 | 28 | abscld | |- ( ( ph /\ n e. NN0 ) -> ( abs ` ( seq 0 ( + , A ) ` n ) ) e. RR ) |
| 76 | 23 75 | sylan2 | |- ( ( ph /\ n e. ( 0 ... ( N - 1 ) ) ) -> ( abs ` ( seq 0 ( + , A ) ` n ) ) e. RR ) |
| 77 | 22 76 | fsumrecl | |- ( ph -> sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) e. RR ) |
| 78 | peano2re | |- ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) e. RR -> ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) e. RR ) |
|
| 79 | 77 78 | syl | |- ( ph -> ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) e. RR ) |
| 80 | 74 79 | remulcld | |- ( ph -> ( ( abs ` ( 1 - X ) ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) e. RR ) |
| 81 | 21 33 | absmuld | |- ( ph -> ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) = ( ( abs ` ( 1 - X ) ) x. ( abs ` sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 82 | 33 | abscld | |- ( ph -> ( abs ` sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. RR ) |
| 83 | 21 | absge0d | |- ( ph -> 0 <_ ( abs ` ( 1 - X ) ) ) |
| 84 | 31 | abscld | |- ( ( ph /\ n e. NN0 ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. RR ) |
| 85 | 23 84 | sylan2 | |- ( ( ph /\ n e. ( 0 ... ( N - 1 ) ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. RR ) |
| 86 | 22 85 | fsumrecl | |- ( ph -> sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. RR ) |
| 87 | 22 32 | fsumabs | |- ( ph -> ( abs ` sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 88 | 19 | abscld | |- ( ph -> ( abs ` X ) e. RR ) |
| 89 | reexpcl | |- ( ( ( abs ` X ) e. RR /\ n e. NN0 ) -> ( ( abs ` X ) ^ n ) e. RR ) |
|
| 90 | 88 89 | sylan | |- ( ( ph /\ n e. NN0 ) -> ( ( abs ` X ) ^ n ) e. RR ) |
| 91 | 1red | |- ( ( ph /\ n e. NN0 ) -> 1 e. RR ) |
|
| 92 | 28 | absge0d | |- ( ( ph /\ n e. NN0 ) -> 0 <_ ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 93 | 88 | adantr | |- ( ( ph /\ n e. NN0 ) -> ( abs ` X ) e. RR ) |
| 94 | 19 | absge0d | |- ( ph -> 0 <_ ( abs ` X ) ) |
| 95 | 94 | adantr | |- ( ( ph /\ n e. NN0 ) -> 0 <_ ( abs ` X ) ) |
| 96 | 0cn | |- 0 e. CC |
|
| 97 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 98 | 97 | cnmetdval | |- ( ( X e. CC /\ 0 e. CC ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
| 99 | 19 96 98 | sylancl | |- ( ph -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
| 100 | 19 | subid1d | |- ( ph -> ( X - 0 ) = X ) |
| 101 | 100 | fveq2d | |- ( ph -> ( abs ` ( X - 0 ) ) = ( abs ` X ) ) |
| 102 | 99 101 | eqtrd | |- ( ph -> ( X ( abs o. - ) 0 ) = ( abs ` X ) ) |
| 103 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 104 | 1xr | |- 1 e. RR* |
|
| 105 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ X e. CC ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
|
| 106 | 103 104 105 | mpanl12 | |- ( ( 0 e. CC /\ X e. CC ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
| 107 | 96 19 106 | sylancr | |- ( ph -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
| 108 | 50 107 | mpbid | |- ( ph -> ( X ( abs o. - ) 0 ) < 1 ) |
| 109 | 102 108 | eqbrtrrd | |- ( ph -> ( abs ` X ) < 1 ) |
| 110 | 1re | |- 1 e. RR |
|
| 111 | ltle | |- ( ( ( abs ` X ) e. RR /\ 1 e. RR ) -> ( ( abs ` X ) < 1 -> ( abs ` X ) <_ 1 ) ) |
|
| 112 | 88 110 111 | sylancl | |- ( ph -> ( ( abs ` X ) < 1 -> ( abs ` X ) <_ 1 ) ) |
| 113 | 109 112 | mpd | |- ( ph -> ( abs ` X ) <_ 1 ) |
| 114 | 113 | adantr | |- ( ( ph /\ n e. NN0 ) -> ( abs ` X ) <_ 1 ) |
| 115 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 116 | exple1 | |- ( ( ( ( abs ` X ) e. RR /\ 0 <_ ( abs ` X ) /\ ( abs ` X ) <_ 1 ) /\ n e. NN0 ) -> ( ( abs ` X ) ^ n ) <_ 1 ) |
|
| 117 | 93 95 114 115 116 | syl31anc | |- ( ( ph /\ n e. NN0 ) -> ( ( abs ` X ) ^ n ) <_ 1 ) |
| 118 | 90 91 75 92 117 | lemul2ad | |- ( ( ph /\ n e. NN0 ) -> ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( ( abs ` X ) ^ n ) ) <_ ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. 1 ) ) |
| 119 | 28 30 | absmuld | |- ( ( ph /\ n e. NN0 ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( abs ` ( X ^ n ) ) ) ) |
| 120 | absexp | |- ( ( X e. CC /\ n e. NN0 ) -> ( abs ` ( X ^ n ) ) = ( ( abs ` X ) ^ n ) ) |
|
| 121 | 19 120 | sylan | |- ( ( ph /\ n e. NN0 ) -> ( abs ` ( X ^ n ) ) = ( ( abs ` X ) ^ n ) ) |
| 122 | 121 | oveq2d | |- ( ( ph /\ n e. NN0 ) -> ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( abs ` ( X ^ n ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( ( abs ` X ) ^ n ) ) ) |
| 123 | 119 122 | eqtr2d | |- ( ( ph /\ n e. NN0 ) -> ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( ( abs ` X ) ^ n ) ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 124 | 75 | recnd | |- ( ( ph /\ n e. NN0 ) -> ( abs ` ( seq 0 ( + , A ) ` n ) ) e. CC ) |
| 125 | 124 | mulridd | |- ( ( ph /\ n e. NN0 ) -> ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. 1 ) = ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 126 | 118 123 125 | 3brtr3d | |- ( ( ph /\ n e. NN0 ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 127 | 23 126 | sylan2 | |- ( ( ph /\ n e. ( 0 ... ( N - 1 ) ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 128 | 22 85 76 127 | fsumle | |- ( ph -> sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 129 | 82 86 77 87 128 | letrd | |- ( ph -> ( abs ` sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 130 | 77 | ltp1d | |- ( ph -> sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) < ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) |
| 131 | 82 77 79 129 130 | lelttrd | |- ( ph -> ( abs ` sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) < ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) |
| 132 | 82 79 131 | ltled | |- ( ph -> ( abs ` sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) |
| 133 | 82 79 74 83 132 | lemul2ad | |- ( ph -> ( ( abs ` ( 1 - X ) ) x. ( abs ` sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) <_ ( ( abs ` ( 1 - X ) ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) |
| 134 | 81 133 | eqbrtrd | |- ( ph -> ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) <_ ( ( abs ` ( 1 - X ) ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) |
| 135 | 0red | |- ( ph -> 0 e. RR ) |
|
| 136 | 23 92 | sylan2 | |- ( ( ph /\ n e. ( 0 ... ( N - 1 ) ) ) -> 0 <_ ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 137 | 22 76 136 | fsumge0 | |- ( ph -> 0 <_ sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 138 | 135 77 79 137 130 | lelttrd | |- ( ph -> 0 < ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) |
| 139 | ltmuldiv | |- ( ( ( abs ` ( 1 - X ) ) e. RR /\ R e. RR /\ ( ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) e. RR /\ 0 < ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) -> ( ( ( abs ` ( 1 - X ) ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) < R <-> ( abs ` ( 1 - X ) ) < ( R / ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) ) |
|
| 140 | 74 63 79 138 139 | syl112anc | |- ( ph -> ( ( ( abs ` ( 1 - X ) ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) < R <-> ( abs ` ( 1 - X ) ) < ( R / ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) ) |
| 141 | 12 140 | mpbird | |- ( ph -> ( ( abs ` ( 1 - X ) ) x. ( sum_ n e. ( 0 ... ( N - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) < R ) |
| 142 | 35 80 63 134 141 | lelttrd | |- ( ph -> ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) < R ) |
| 143 | 21 57 | absmuld | |- ( ph -> ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) = ( ( abs ` ( 1 - X ) ) x. ( abs ` sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 144 | 57 | abscld | |- ( ph -> ( abs ` sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. RR ) |
| 145 | 42 | fveq2d | |- ( k = n -> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 146 | eqid | |- ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) = ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) |
|
| 147 | fvex | |- ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. _V |
|
| 148 | 145 146 147 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` n ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 149 | 39 148 | syl | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` n ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 150 | 47 | abscld | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. RR ) |
| 151 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
| 152 | 37 151 | syl | |- ( ph -> N e. ( ZZ>= ` N ) ) |
| 153 | oveq2 | |- ( k = n -> ( ( abs ` X ) ^ k ) = ( ( abs ` X ) ^ n ) ) |
|
| 154 | eqid | |- ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) = ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) |
|
| 155 | ovex | |- ( ( abs ` X ) ^ n ) e. _V |
|
| 156 | 153 154 155 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ` n ) = ( ( abs ` X ) ^ n ) ) |
| 157 | 39 156 | syl | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ` n ) = ( ( abs ` X ) ^ n ) ) |
| 158 | 39 90 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( abs ` X ) ^ n ) e. RR ) |
| 159 | 157 158 | eqeltrd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ` n ) e. RR ) |
| 160 | 150 | recnd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. CC ) |
| 161 | 149 160 | eqeltrd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` n ) e. CC ) |
| 162 | 88 | recnd | |- ( ph -> ( abs ` X ) e. CC ) |
| 163 | absidm | |- ( X e. CC -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
|
| 164 | 19 163 | syl | |- ( ph -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
| 165 | 164 109 | eqbrtrd | |- ( ph -> ( abs ` ( abs ` X ) ) < 1 ) |
| 166 | 162 165 10 157 | geolim2 | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ) ~~> ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) |
| 167 | seqex | |- seq N ( + , ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ) e. _V |
|
| 168 | ovex | |- ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) e. _V |
|
| 169 | 167 168 | breldm | |- ( seq N ( + , ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ) ~~> ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) -> seq N ( + , ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ) e. dom ~~> ) |
| 170 | 166 169 | syl | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ) e. dom ~~> ) |
| 171 | 119 122 | eqtrd | |- ( ( ph /\ n e. NN0 ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( ( abs ` X ) ^ n ) ) ) |
| 172 | 39 171 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( ( abs ` X ) ^ n ) ) ) |
| 173 | 39 75 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( seq 0 ( + , A ) ` n ) ) e. RR ) |
| 174 | 63 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> R e. RR ) |
| 175 | 88 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` X ) e. RR ) |
| 176 | 94 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> 0 <_ ( abs ` X ) ) |
| 177 | 175 39 176 | expge0d | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> 0 <_ ( ( abs ` X ) ^ n ) ) |
| 178 | 40 | fveq2d | |- ( k = n -> ( abs ` ( seq 0 ( + , A ) ` k ) ) = ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
| 179 | 178 | breq1d | |- ( k = n -> ( ( abs ` ( seq 0 ( + , A ) ` k ) ) < R <-> ( abs ` ( seq 0 ( + , A ) ` n ) ) < R ) ) |
| 180 | 179 | rspccva | |- ( ( A. k e. ( ZZ>= ` N ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < R /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( seq 0 ( + , A ) ` n ) ) < R ) |
| 181 | 11 180 | sylan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( seq 0 ( + , A ) ` n ) ) < R ) |
| 182 | 173 174 181 | ltled | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( seq 0 ( + , A ) ` n ) ) <_ R ) |
| 183 | 173 174 158 177 182 | lemul1ad | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( abs ` ( seq 0 ( + , A ) ` n ) ) x. ( ( abs ` X ) ^ n ) ) <_ ( R x. ( ( abs ` X ) ^ n ) ) ) |
| 184 | 172 183 | eqbrtrd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( R x. ( ( abs ` X ) ^ n ) ) ) |
| 185 | 149 | fveq2d | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` n ) ) = ( abs ` ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 186 | absidm | |- ( ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC -> ( abs ` ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
|
| 187 | 47 186 | syl | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 188 | 185 187 | eqtrd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` n ) ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 189 | 157 | oveq2d | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( R x. ( ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ` n ) ) = ( R x. ( ( abs ` X ) ^ n ) ) ) |
| 190 | 184 188 189 | 3brtr4d | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` n ) ) <_ ( R x. ( ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ` n ) ) ) |
| 191 | 36 152 159 161 170 63 190 | cvgcmpce | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ) e. dom ~~> ) |
| 192 | 36 37 149 150 191 | isumrecl | |- ( ph -> sum_ n e. ( ZZ>= ` N ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. RR ) |
| 193 | eldifsni | |- ( X e. ( S \ { 1 } ) -> X =/= 1 ) |
|
| 194 | 8 193 | syl | |- ( ph -> X =/= 1 ) |
| 195 | 194 | necomd | |- ( ph -> 1 =/= X ) |
| 196 | subeq0 | |- ( ( 1 e. CC /\ X e. CC ) -> ( ( 1 - X ) = 0 <-> 1 = X ) ) |
|
| 197 | 196 | necon3bid | |- ( ( 1 e. CC /\ X e. CC ) -> ( ( 1 - X ) =/= 0 <-> 1 =/= X ) ) |
| 198 | 17 19 197 | sylancr | |- ( ph -> ( ( 1 - X ) =/= 0 <-> 1 =/= X ) ) |
| 199 | 195 198 | mpbird | |- ( ph -> ( 1 - X ) =/= 0 ) |
| 200 | 21 199 | absrpcld | |- ( ph -> ( abs ` ( 1 - X ) ) e. RR+ ) |
| 201 | 73 200 | rerpdivcld | |- ( ph -> ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) e. RR ) |
| 202 | 36 37 46 47 56 | isumclim2 | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ~~> sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 203 | 36 37 149 160 191 | isumclim2 | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ) ~~> sum_ n e. ( ZZ>= ` N ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 204 | 39 54 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) e. CC ) |
| 205 | 46 | fveq2d | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( abs ` ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) ) = ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 206 | 149 205 | eqtr4d | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( abs ` ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` n ) = ( abs ` ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) ) ) |
| 207 | 36 202 203 37 204 206 | iserabs | |- ( ph -> ( abs ` sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ sum_ n e. ( ZZ>= ` N ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 208 | 88 10 | reexpcld | |- ( ph -> ( ( abs ` X ) ^ N ) e. RR ) |
| 209 | difrp | |- ( ( ( abs ` X ) e. RR /\ 1 e. RR ) -> ( ( abs ` X ) < 1 <-> ( 1 - ( abs ` X ) ) e. RR+ ) ) |
|
| 210 | 88 110 209 | sylancl | |- ( ph -> ( ( abs ` X ) < 1 <-> ( 1 - ( abs ` X ) ) e. RR+ ) ) |
| 211 | 109 210 | mpbid | |- ( ph -> ( 1 - ( abs ` X ) ) e. RR+ ) |
| 212 | 208 211 | rerpdivcld | |- ( ph -> ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) e. RR ) |
| 213 | 63 212 | remulcld | |- ( ph -> ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) e. RR ) |
| 214 | 153 | oveq2d | |- ( k = n -> ( R x. ( ( abs ` X ) ^ k ) ) = ( R x. ( ( abs ` X ) ^ n ) ) ) |
| 215 | eqid | |- ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) = ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) |
|
| 216 | ovex | |- ( R x. ( ( abs ` X ) ^ n ) ) e. _V |
|
| 217 | 214 215 216 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ` n ) = ( R x. ( ( abs ` X ) ^ n ) ) ) |
| 218 | 39 217 | syl | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ` n ) = ( R x. ( ( abs ` X ) ^ n ) ) ) |
| 219 | 174 158 | remulcld | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( R x. ( ( abs ` X ) ^ n ) ) e. RR ) |
| 220 | 9 | rpcnd | |- ( ph -> R e. CC ) |
| 221 | 159 | recnd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ` n ) e. CC ) |
| 222 | 218 189 | eqtr4d | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ` n ) = ( R x. ( ( k e. NN0 |-> ( ( abs ` X ) ^ k ) ) ` n ) ) ) |
| 223 | 36 37 220 166 221 222 | isermulc2 | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ) ~~> ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) ) |
| 224 | seqex | |- seq N ( + , ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ) e. _V |
|
| 225 | ovex | |- ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) e. _V |
|
| 226 | 224 225 | breldm | |- ( seq N ( + , ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ) ~~> ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) -> seq N ( + , ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ) e. dom ~~> ) |
| 227 | 223 226 | syl | |- ( ph -> seq N ( + , ( k e. NN0 |-> ( R x. ( ( abs ` X ) ^ k ) ) ) ) e. dom ~~> ) |
| 228 | 36 37 149 150 218 219 184 191 227 | isumle | |- ( ph -> sum_ n e. ( ZZ>= ` N ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ sum_ n e. ( ZZ>= ` N ) ( R x. ( ( abs ` X ) ^ n ) ) ) |
| 229 | 219 | recnd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( R x. ( ( abs ` X ) ^ n ) ) e. CC ) |
| 230 | 36 37 218 229 223 | isumclim | |- ( ph -> sum_ n e. ( ZZ>= ` N ) ( R x. ( ( abs ` X ) ^ n ) ) = ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) ) |
| 231 | 228 230 | breqtrd | |- ( ph -> sum_ n e. ( ZZ>= ` N ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) ) |
| 232 | 9 211 | rpdivcld | |- ( ph -> ( R / ( 1 - ( abs ` X ) ) ) e. RR+ ) |
| 233 | 232 | rpred | |- ( ph -> ( R / ( 1 - ( abs ` X ) ) ) e. RR ) |
| 234 | 208 | recnd | |- ( ph -> ( ( abs ` X ) ^ N ) e. CC ) |
| 235 | 211 | rpcnd | |- ( ph -> ( 1 - ( abs ` X ) ) e. CC ) |
| 236 | 211 | rpne0d | |- ( ph -> ( 1 - ( abs ` X ) ) =/= 0 ) |
| 237 | 220 234 235 236 | div12d | |- ( ph -> ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) = ( ( ( abs ` X ) ^ N ) x. ( R / ( 1 - ( abs ` X ) ) ) ) ) |
| 238 | 1red | |- ( ph -> 1 e. RR ) |
|
| 239 | 232 | rpge0d | |- ( ph -> 0 <_ ( R / ( 1 - ( abs ` X ) ) ) ) |
| 240 | exple1 | |- ( ( ( ( abs ` X ) e. RR /\ 0 <_ ( abs ` X ) /\ ( abs ` X ) <_ 1 ) /\ N e. NN0 ) -> ( ( abs ` X ) ^ N ) <_ 1 ) |
|
| 241 | 88 94 113 10 240 | syl31anc | |- ( ph -> ( ( abs ` X ) ^ N ) <_ 1 ) |
| 242 | 208 238 233 239 241 | lemul1ad | |- ( ph -> ( ( ( abs ` X ) ^ N ) x. ( R / ( 1 - ( abs ` X ) ) ) ) <_ ( 1 x. ( R / ( 1 - ( abs ` X ) ) ) ) ) |
| 243 | 232 | rpcnd | |- ( ph -> ( R / ( 1 - ( abs ` X ) ) ) e. CC ) |
| 244 | 243 | mullidd | |- ( ph -> ( 1 x. ( R / ( 1 - ( abs ` X ) ) ) ) = ( R / ( 1 - ( abs ` X ) ) ) ) |
| 245 | 242 244 | breqtrd | |- ( ph -> ( ( ( abs ` X ) ^ N ) x. ( R / ( 1 - ( abs ` X ) ) ) ) <_ ( R / ( 1 - ( abs ` X ) ) ) ) |
| 246 | 237 245 | eqbrtrd | |- ( ph -> ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) <_ ( R / ( 1 - ( abs ` X ) ) ) ) |
| 247 | 18 | simprd | |- ( ph -> ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) |
| 248 | resubcl | |- ( ( 1 e. RR /\ ( abs ` X ) e. RR ) -> ( 1 - ( abs ` X ) ) e. RR ) |
|
| 249 | 110 88 248 | sylancr | |- ( ph -> ( 1 - ( abs ` X ) ) e. RR ) |
| 250 | 3 249 | remulcld | |- ( ph -> ( M x. ( 1 - ( abs ` X ) ) ) e. RR ) |
| 251 | 74 250 9 | lemul2d | |- ( ph -> ( ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) <-> ( R x. ( abs ` ( 1 - X ) ) ) <_ ( R x. ( M x. ( 1 - ( abs ` X ) ) ) ) ) ) |
| 252 | 247 251 | mpbid | |- ( ph -> ( R x. ( abs ` ( 1 - X ) ) ) <_ ( R x. ( M x. ( 1 - ( abs ` X ) ) ) ) ) |
| 253 | 3 | recnd | |- ( ph -> M e. CC ) |
| 254 | 220 253 235 | mul12d | |- ( ph -> ( R x. ( M x. ( 1 - ( abs ` X ) ) ) ) = ( M x. ( R x. ( 1 - ( abs ` X ) ) ) ) ) |
| 255 | 220 235 | mulcomd | |- ( ph -> ( R x. ( 1 - ( abs ` X ) ) ) = ( ( 1 - ( abs ` X ) ) x. R ) ) |
| 256 | 255 | oveq2d | |- ( ph -> ( M x. ( R x. ( 1 - ( abs ` X ) ) ) ) = ( M x. ( ( 1 - ( abs ` X ) ) x. R ) ) ) |
| 257 | 253 235 220 | mul12d | |- ( ph -> ( M x. ( ( 1 - ( abs ` X ) ) x. R ) ) = ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) ) |
| 258 | 254 256 257 | 3eqtrd | |- ( ph -> ( R x. ( M x. ( 1 - ( abs ` X ) ) ) ) = ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) ) |
| 259 | 252 258 | breqtrd | |- ( ph -> ( R x. ( abs ` ( 1 - X ) ) ) <_ ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) ) |
| 260 | 249 73 | remulcld | |- ( ph -> ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) e. RR ) |
| 261 | 63 260 200 | lemuldivd | |- ( ph -> ( ( R x. ( abs ` ( 1 - X ) ) ) <_ ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) <-> R <_ ( ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) / ( abs ` ( 1 - X ) ) ) ) ) |
| 262 | 259 261 | mpbid | |- ( ph -> R <_ ( ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) / ( abs ` ( 1 - X ) ) ) ) |
| 263 | 73 | recnd | |- ( ph -> ( M x. R ) e. CC ) |
| 264 | 74 | recnd | |- ( ph -> ( abs ` ( 1 - X ) ) e. CC ) |
| 265 | 200 | rpne0d | |- ( ph -> ( abs ` ( 1 - X ) ) =/= 0 ) |
| 266 | 235 263 264 265 | divassd | |- ( ph -> ( ( ( 1 - ( abs ` X ) ) x. ( M x. R ) ) / ( abs ` ( 1 - X ) ) ) = ( ( 1 - ( abs ` X ) ) x. ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) ) |
| 267 | 262 266 | breqtrd | |- ( ph -> R <_ ( ( 1 - ( abs ` X ) ) x. ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) ) |
| 268 | posdif | |- ( ( ( abs ` X ) e. RR /\ 1 e. RR ) -> ( ( abs ` X ) < 1 <-> 0 < ( 1 - ( abs ` X ) ) ) ) |
|
| 269 | 88 110 268 | sylancl | |- ( ph -> ( ( abs ` X ) < 1 <-> 0 < ( 1 - ( abs ` X ) ) ) ) |
| 270 | 109 269 | mpbid | |- ( ph -> 0 < ( 1 - ( abs ` X ) ) ) |
| 271 | ledivmul | |- ( ( R e. RR /\ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) e. RR /\ ( ( 1 - ( abs ` X ) ) e. RR /\ 0 < ( 1 - ( abs ` X ) ) ) ) -> ( ( R / ( 1 - ( abs ` X ) ) ) <_ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) <-> R <_ ( ( 1 - ( abs ` X ) ) x. ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) ) ) |
|
| 272 | 63 201 249 270 271 | syl112anc | |- ( ph -> ( ( R / ( 1 - ( abs ` X ) ) ) <_ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) <-> R <_ ( ( 1 - ( abs ` X ) ) x. ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) ) ) |
| 273 | 267 272 | mpbird | |- ( ph -> ( R / ( 1 - ( abs ` X ) ) ) <_ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) |
| 274 | 213 233 201 246 273 | letrd | |- ( ph -> ( R x. ( ( ( abs ` X ) ^ N ) / ( 1 - ( abs ` X ) ) ) ) <_ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) |
| 275 | 192 213 201 231 274 | letrd | |- ( ph -> sum_ n e. ( ZZ>= ` N ) ( abs ` ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) |
| 276 | 144 192 201 207 275 | letrd | |- ( ph -> ( abs ` sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) |
| 277 | 144 73 200 | lemuldiv2d | |- ( ph -> ( ( ( abs ` ( 1 - X ) ) x. ( abs ` sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) <_ ( M x. R ) <-> ( abs ` sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <_ ( ( M x. R ) / ( abs ` ( 1 - X ) ) ) ) ) |
| 278 | 276 277 | mpbird | |- ( ph -> ( ( abs ` ( 1 - X ) ) x. ( abs ` sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) <_ ( M x. R ) ) |
| 279 | 143 278 | eqbrtrd | |- ( ph -> ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) <_ ( M x. R ) ) |
| 280 | 35 59 63 73 142 279 | ltleaddd | |- ( ph -> ( ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) + ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) < ( R + ( M x. R ) ) ) |
| 281 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 282 | 253 281 220 | adddird | |- ( ph -> ( ( M + 1 ) x. R ) = ( ( M x. R ) + ( 1 x. R ) ) ) |
| 283 | 220 | mullidd | |- ( ph -> ( 1 x. R ) = R ) |
| 284 | 283 | oveq2d | |- ( ph -> ( ( M x. R ) + ( 1 x. R ) ) = ( ( M x. R ) + R ) ) |
| 285 | 263 220 | addcomd | |- ( ph -> ( ( M x. R ) + R ) = ( R + ( M x. R ) ) ) |
| 286 | 282 284 285 | 3eqtrd | |- ( ph -> ( ( M + 1 ) x. R ) = ( R + ( M x. R ) ) ) |
| 287 | 280 286 | breqtrrd | |- ( ph -> ( ( abs ` ( ( 1 - X ) x. sum_ n e. ( 0 ... ( N - 1 ) ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) + ( abs ` ( ( 1 - X ) x. sum_ n e. ( ZZ>= ` N ) ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) < ( ( M + 1 ) x. R ) ) |
| 288 | 16 60 64 72 287 | lelttrd | |- ( ph -> ( abs ` ( F ` X ) ) < ( ( M + 1 ) x. R ) ) |