This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iserabs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iserabs.2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | ||
| iserabs.3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 ) | ||
| iserabs.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iserabs.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| iserabs.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | iserabs | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserabs.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iserabs.2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | |
| 3 | iserabs.3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 ) | |
| 4 | iserabs.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | iserabs.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | iserabs.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 7 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 8 | 7 | mptex | ⊢ ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ∈ V |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ∈ V ) |
| 10 | 1 4 5 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 12 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) | |
| 13 | eqid | ⊢ ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) | |
| 14 | fvex | ⊢ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ∈ V | |
| 15 | 12 13 14 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) = ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 17 | 1 2 9 4 11 16 | climabs | ⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ⇝ ( abs ‘ 𝐴 ) ) |
| 18 | 11 | abscld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 19 | 16 18 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 20 | 5 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 21 | 6 20 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 22 | 1 4 21 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) | |
| 25 | 24 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 26 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 27 | 26 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 28 | 27 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 29 | 28 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 30 | 27 6 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 32 | 25 29 31 | seqabs | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
| 33 | 16 32 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( abs ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
| 34 | 1 4 17 3 19 23 33 | climle | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 𝐵 ) |