This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a nonzero number is a positive real. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| absne0d.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | absrpcld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | absne0d.2 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 3 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |