This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | posdif | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 4 | ltaddpos | ⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < ( 𝐵 − 𝐴 ) ↔ 𝐴 < ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐵 − 𝐴 ) ↔ 𝐴 < ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) ) |
| 6 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 7 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 8 | pncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) |
| 10 | 9 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < ( 𝐴 + ( 𝐵 − 𝐴 ) ) ↔ 𝐴 < 𝐵 ) ) |
| 11 | 5 10 | bitr2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |