This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumclim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumclim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumclim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumclim.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumclim.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐵 ) | ||
| Assertion | isumclim | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumclim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumclim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumclim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumclim.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | isumclim.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐵 ) | |
| 6 | 1 2 3 4 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 7 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 8 | ffun | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) | |
| 9 | 7 8 | ax-mp | ⊢ Fun ⇝ |
| 10 | funbrfv | ⊢ ( Fun ⇝ → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐵 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = 𝐵 ) ) | |
| 11 | 9 5 10 | mpsyl | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) = 𝐵 ) |
| 12 | 6 11 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = 𝐵 ) |