This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumabs.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumabs.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fsumabs | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumabs.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumabs.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 4 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 5 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑤 = ∅ → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ) |
| 7 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) | |
| 8 | 6 7 | breq12d | ⊢ ( 𝑤 = ∅ → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) |
| 9 | 4 8 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( ∅ ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) ) ) |
| 11 | sseq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 12 | sumeq1 | ⊢ ( 𝑤 = 𝑥 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝑥 𝐵 ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑤 = 𝑥 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ) |
| 14 | sumeq1 | ⊢ ( 𝑤 = 𝑥 → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) | |
| 15 | 13 14 | breq12d | ⊢ ( 𝑤 = 𝑥 → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) |
| 16 | 11 15 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) ) ) |
| 18 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) | |
| 19 | sumeq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) | |
| 20 | 19 | fveq2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ) |
| 21 | sumeq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) | |
| 22 | 20 21 | breq12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
| 23 | 18 22 | imbi12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
| 25 | sseq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 26 | sumeq1 | ⊢ ( 𝑤 = 𝐴 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) | |
| 27 | 26 | fveq2d | ⊢ ( 𝑤 = 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 28 | sumeq1 | ⊢ ( 𝑤 = 𝐴 → Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) | |
| 29 | 27 28 | breq12d | ⊢ ( 𝑤 = 𝐴 → ( ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ↔ ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) |
| 30 | 25 29 | imbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ↔ ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑤 𝐵 ) ≤ Σ 𝑘 ∈ 𝑤 ( abs ‘ 𝐵 ) ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) ) ) |
| 32 | 0le0 | ⊢ 0 ≤ 0 | |
| 33 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 34 | 33 | fveq2i | ⊢ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) = ( abs ‘ 0 ) |
| 35 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 36 | 34 35 | eqtri | ⊢ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) = 0 |
| 37 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) = 0 | |
| 38 | 32 36 37 | 3brtr4i | ⊢ ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) |
| 39 | 38 | 2a1i | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( abs ‘ 𝐵 ) ) ) |
| 40 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) | |
| 41 | sstr | ⊢ ( ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) | |
| 42 | 40 41 | mpan | ⊢ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 43 | 42 | imim1i | ⊢ ( ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) |
| 44 | simpll | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝜑 ) | |
| 45 | 44 1 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 46 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) | |
| 47 | 46 | unssad | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
| 48 | 45 47 | ssfid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ∈ Fin ) |
| 49 | 47 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐴 ) |
| 50 | 44 49 2 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑥 ) → 𝐵 ∈ ℂ ) |
| 51 | 48 50 | fsumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ 𝑥 𝐵 ∈ ℂ ) |
| 52 | 51 | abscld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ∈ ℝ ) |
| 53 | 50 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ 𝑥 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 54 | 48 53 | fsumrecl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 55 | 46 | unssbd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → { 𝑦 } ⊆ 𝐴 ) |
| 56 | vex | ⊢ 𝑦 ∈ V | |
| 57 | 56 | snss | ⊢ ( 𝑦 ∈ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
| 58 | 55 57 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 59 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 60 | 44 59 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 61 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐵 | |
| 62 | 61 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 63 | csbeq1a | ⊢ ( 𝑘 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) | |
| 64 | 63 | eleq1d | ⊢ ( 𝑘 = 𝑦 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 65 | 62 64 | rspc | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 66 | 58 60 65 | sylc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 67 | 66 | abscld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 68 | 52 54 67 | leadd1d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 69 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ¬ 𝑦 ∈ 𝑥 ) | |
| 70 | disjsn | ⊢ ( ( 𝑥 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑥 ) | |
| 71 | 69 70 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∩ { 𝑦 } ) = ∅ ) |
| 72 | eqidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) = ( 𝑥 ∪ { 𝑦 } ) ) | |
| 73 | 45 46 | ssfid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ∈ Fin ) |
| 74 | 46 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝑘 ∈ 𝐴 ) |
| 75 | 44 74 2 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → 𝐵 ∈ ℂ ) |
| 76 | 75 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 77 | 76 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 78 | 71 72 73 77 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) = ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) ) ) |
| 79 | csbfv2g | ⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) | |
| 80 | 79 | elv | ⊢ ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) |
| 81 | 67 | recnd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
| 82 | 80 81 | eqeltrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 83 | sumsns | ⊢ ( ( 𝑦 ∈ V ∧ ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) = ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ) | |
| 84 | 56 82 83 | sylancr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) = ⦋ 𝑦 / 𝑘 ⦌ ( abs ‘ 𝐵 ) ) |
| 85 | 84 80 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + Σ 𝑘 ∈ { 𝑦 } ( abs ‘ 𝐵 ) ) = ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
| 87 | 78 86 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) = ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
| 88 | 87 | breq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ ( Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 89 | 68 88 | bitr4d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ↔ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
| 90 | 71 72 73 75 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑥 𝐵 + Σ 𝑘 ∈ { 𝑦 } 𝐵 ) ) |
| 91 | sumsns | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑦 } 𝐵 = ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) | |
| 92 | 58 66 91 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ { 𝑦 } 𝐵 = ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) |
| 93 | 92 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( Σ 𝑘 ∈ 𝑥 𝐵 + Σ 𝑘 ∈ { 𝑦 } 𝐵 ) = ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) |
| 94 | 90 93 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) |
| 95 | 94 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) = ( abs ‘ ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
| 96 | 51 66 | abstrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ ( Σ 𝑘 ∈ 𝑥 𝐵 + ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
| 97 | 95 96 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ) |
| 98 | 73 75 | fsumcl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ∈ ℂ ) |
| 99 | 98 | abscld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ∈ ℝ ) |
| 100 | 52 67 | readdcld | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 101 | 73 76 | fsumrecl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 102 | letr | ⊢ ( ( ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ∈ ℝ ∧ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ∧ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ∈ ℝ ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∧ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) | |
| 103 | 99 100 101 102 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ∧ ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
| 104 | 97 103 | mpand | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) + ( abs ‘ ⦋ 𝑦 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
| 105 | 89 104 | sylbid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) |
| 106 | 105 | ex | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
| 107 | 106 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
| 108 | 43 107 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) |
| 109 | 108 | expcom | ⊢ ( ¬ 𝑦 ∈ 𝑥 → ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
| 110 | 109 | a2d | ⊢ ( ¬ 𝑦 ∈ 𝑥 → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
| 111 | 110 | adantl | ⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( abs ‘ 𝐵 ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑥 ∪ { 𝑦 } ) ( abs ‘ 𝐵 ) ) ) ) ) |
| 112 | 10 17 24 31 39 111 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) ) |
| 113 | 1 112 | mpcom | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) ) |
| 114 | 3 113 | mpi | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( abs ‘ 𝐵 ) ) |