This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | sncld | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋 ) → { 𝑃 } ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | haust1 | ⊢ ( 𝐽 ∈ Haus → 𝐽 ∈ Fre ) | |
| 3 | 1 | t1sncld | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑃 ∈ 𝑋 ) → { 𝑃 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋 ) → { 𝑃 } ∈ ( Clsd ‘ 𝐽 ) ) |