This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isopn3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 3 | inss2 | ⊢ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝒫 𝑆 | |
| 4 | 3 | unissi | ⊢ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ ∪ 𝒫 𝑆 |
| 5 | unipw | ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
| 6 | 4 5 | sseqtri | ⊢ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝑆 |
| 7 | 6 | a1i | ⊢ ( 𝑆 ∈ 𝐽 → ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ⊆ 𝑆 ) |
| 8 | id | ⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ∈ 𝐽 ) | |
| 9 | pwidg | ⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ∈ 𝒫 𝑆 ) | |
| 10 | 8 9 | elind | ⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 11 | elssuni | ⊢ ( 𝑆 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) → 𝑆 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 13 | 7 12 | eqssd | ⊢ ( 𝑆 ∈ 𝐽 → ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = 𝑆 ) |
| 14 | 2 13 | sylan9eq | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑆 ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
| 15 | 14 | ex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |
| 16 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
| 17 | eleq1 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽 ) ) | |
| 18 | 16 17 | syl5ibcom | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 → 𝑆 ∈ 𝐽 ) ) |
| 19 | 15 18 | impbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) ) |