This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: mp3an with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mp3an12i.1 | ⊢ 𝜑 | |
| mp3an12i.2 | ⊢ 𝜓 | ||
| mp3an12i.3 | ⊢ ( 𝜒 → 𝜃 ) | ||
| mp3an12i.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | mp3an12i | ⊢ ( 𝜒 → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12i.1 | ⊢ 𝜑 | |
| 2 | mp3an12i.2 | ⊢ 𝜓 | |
| 3 | mp3an12i.3 | ⊢ ( 𝜒 → 𝜃 ) | |
| 4 | mp3an12i.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) | |
| 5 | 1 2 4 | mp3an12 | ⊢ ( 𝜃 → 𝜏 ) |
| 6 | 3 5 | syl | ⊢ ( 𝜒 → 𝜏 ) |