This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| Assertion | abelthlem1 | ⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 4 | eqid | ⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) | |
| 5 | eqid | ⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 6 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 7 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
| 8 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 9 | 8 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 10 | 9 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
| 11 | 7 10 | eqtr4d | ⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
| 12 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 13 | oveq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) | |
| 14 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 15 | 1exp | ⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 17 | 13 16 | sylan9eq | ⊢ ( ( 𝑧 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑛 ) = 1 ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑧 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( 𝑧 = 1 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
| 20 | nn0ex | ⊢ ℕ0 ∈ V | |
| 21 | 20 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ∈ V |
| 22 | 19 4 21 | fvmpt | ⊢ ( 1 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
| 23 | 12 22 | ax-mp | ⊢ ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 24 | 11 23 | eqtr4di | ⊢ ( 𝜑 → 𝐴 = ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) ) |
| 25 | 24 | seqeq3d | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) = seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) ) ) |
| 26 | 25 2 | eqeltrrd | ⊢ ( 𝜑 → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 1 ) ) ∈ dom ⇝ ) |
| 27 | 4 1 5 6 26 | radcnvle | ⊢ ( 𝜑 → ( abs ‘ 1 ) ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 28 | 3 27 | eqbrtrrid | ⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |