This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3jcad.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 3jcad.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) | ||
| 3jcad.3 | ⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) | ||
| Assertion | 3jcad | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jcad.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 3jcad.2 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) | |
| 3 | 3jcad.3 | ⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) | |
| 4 | 1 | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
| 5 | 2 | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
| 6 | 3 | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
| 7 | 4 5 6 | 3jca | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) |
| 8 | 7 | ex | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |