This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abel's theorem. If the power series sum_ n e. NN0 A ( n ) ( x ^ n ) is convergent at 1 , then it is equal to the limit from "below", along a Stolz angle S (note that the M = 1 case of a Stolz angle is the real line [ 0 , 1 ] ). (Continuity on S \ { 1 } follows more generally from psercn .) (Contributed by Mario Carneiro, 2-Apr-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| Assertion | abelth | |- ( ph -> F e. ( S -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | 1 2 3 4 5 6 | abelthlem4 | |- ( ph -> F : S --> CC ) |
| 8 | 1 2 3 4 5 6 | abelthlem9 | |- ( ( ph /\ r e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) |
| 9 | 1 2 3 4 5 | abelthlem2 | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 10 | 9 | simpld | |- ( ph -> 1 e. S ) |
| 11 | 10 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> 1 e. S ) |
| 12 | simpr | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> y e. S ) |
|
| 13 | 11 12 | ovresd | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) = ( 1 ( abs o. - ) y ) ) |
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | 5 | ssrab3 | |- S C_ CC |
| 16 | 15 12 | sselid | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> y e. CC ) |
| 17 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 18 | 17 | cnmetdval | |- ( ( 1 e. CC /\ y e. CC ) -> ( 1 ( abs o. - ) y ) = ( abs ` ( 1 - y ) ) ) |
| 19 | 14 16 18 | sylancr | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( 1 ( abs o. - ) y ) = ( abs ` ( 1 - y ) ) ) |
| 20 | 13 19 | eqtrd | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) = ( abs ` ( 1 - y ) ) ) |
| 21 | 20 | breq1d | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w <-> ( abs ` ( 1 - y ) ) < w ) ) |
| 22 | 7 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> F : S --> CC ) |
| 23 | 22 11 | ffvelcdmd | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( F ` 1 ) e. CC ) |
| 24 | 7 | adantr | |- ( ( ph /\ r e. RR+ ) -> F : S --> CC ) |
| 25 | 24 | ffvelcdmda | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( F ` y ) e. CC ) |
| 26 | 17 | cnmetdval | |- ( ( ( F ` 1 ) e. CC /\ ( F ` y ) e. CC ) -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) = ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) ) |
| 27 | 23 25 26 | syl2anc | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) = ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) ) |
| 28 | 27 | breq1d | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r <-> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) |
| 29 | 21 28 | imbi12d | |- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) <-> ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) ) |
| 30 | 29 | ralbidva | |- ( ( ph /\ r e. RR+ ) -> ( A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) <-> A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) ) |
| 31 | 30 | rexbidv | |- ( ( ph /\ r e. RR+ ) -> ( E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) <-> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) ) |
| 32 | 8 31 | mpbird | |- ( ( ph /\ r e. RR+ ) -> E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) |
| 33 | 32 | ralrimiva | |- ( ph -> A. r e. RR+ E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) |
| 34 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 35 | xmetres2 | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S C_ CC ) -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) |
|
| 36 | 34 15 35 | mp2an | |- ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) |
| 37 | eqid | |- ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( S X. S ) ) |
|
| 38 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 39 | 38 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 40 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) |
|
| 41 | 37 39 40 | metrest | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) = ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) ) |
| 42 | 34 15 41 | mp2an | |- ( ( TopOpen ` CCfld ) |`t S ) = ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) |
| 43 | 42 39 | metcnp | |- ( ( ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) /\ ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. S ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) <-> ( F : S --> CC /\ A. r e. RR+ E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) ) ) |
| 44 | 36 34 10 43 | mp3an12i | |- ( ph -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) <-> ( F : S --> CC /\ A. r e. RR+ E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) ) ) |
| 45 | 7 33 44 | mpbir2and | |- ( ph -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
| 46 | 45 | ad2antrr | |- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
| 47 | simpr | |- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> y = 1 ) |
|
| 48 | 47 | fveq2d | |- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
| 49 | 46 48 | eleqtrrd | |- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 50 | eldifsn | |- ( y e. ( S \ { 1 } ) <-> ( y e. S /\ y =/= 1 ) ) |
|
| 51 | 9 | simprd | |- ( ph -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 52 | abscl | |- ( w e. CC -> ( abs ` w ) e. RR ) |
|
| 53 | 52 | adantl | |- ( ( ph /\ w e. CC ) -> ( abs ` w ) e. RR ) |
| 54 | 53 | a1d | |- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> ( abs ` w ) e. RR ) ) |
| 55 | absge0 | |- ( w e. CC -> 0 <_ ( abs ` w ) ) |
|
| 56 | 55 | adantl | |- ( ( ph /\ w e. CC ) -> 0 <_ ( abs ` w ) ) |
| 57 | 56 | a1d | |- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> 0 <_ ( abs ` w ) ) ) |
| 58 | 1 2 | abelthlem1 | |- ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 59 | 58 | adantr | |- ( ( ph /\ w e. CC ) -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 60 | 53 | rexrd | |- ( ( ph /\ w e. CC ) -> ( abs ` w ) e. RR* ) |
| 61 | 1re | |- 1 e. RR |
|
| 62 | rexr | |- ( 1 e. RR -> 1 e. RR* ) |
|
| 63 | 61 62 | mp1i | |- ( ( ph /\ w e. CC ) -> 1 e. RR* ) |
| 64 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 65 | eqid | |- ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) = ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) |
|
| 66 | eqid | |- sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 67 | 65 1 66 | radcnvcl | |- ( ph -> sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. ( 0 [,] +oo ) ) |
| 68 | 64 67 | sselid | |- ( ph -> sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 69 | 68 | adantr | |- ( ( ph /\ w e. CC ) -> sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
| 70 | xrltletr | |- ( ( ( abs ` w ) e. RR* /\ 1 e. RR* /\ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) -> ( ( ( abs ` w ) < 1 /\ 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) -> ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
|
| 71 | 60 63 69 70 | syl3anc | |- ( ( ph /\ w e. CC ) -> ( ( ( abs ` w ) < 1 /\ 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) -> ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
| 72 | 59 71 | mpan2d | |- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
| 73 | 54 57 72 | 3jcad | |- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> ( ( abs ` w ) e. RR /\ 0 <_ ( abs ` w ) /\ ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 74 | 0cn | |- 0 e. CC |
|
| 75 | 17 | cnmetdval | |- ( ( 0 e. CC /\ w e. CC ) -> ( 0 ( abs o. - ) w ) = ( abs ` ( 0 - w ) ) ) |
| 76 | 74 75 | mpan | |- ( w e. CC -> ( 0 ( abs o. - ) w ) = ( abs ` ( 0 - w ) ) ) |
| 77 | abssub | |- ( ( 0 e. CC /\ w e. CC ) -> ( abs ` ( 0 - w ) ) = ( abs ` ( w - 0 ) ) ) |
|
| 78 | 74 77 | mpan | |- ( w e. CC -> ( abs ` ( 0 - w ) ) = ( abs ` ( w - 0 ) ) ) |
| 79 | subid1 | |- ( w e. CC -> ( w - 0 ) = w ) |
|
| 80 | 79 | fveq2d | |- ( w e. CC -> ( abs ` ( w - 0 ) ) = ( abs ` w ) ) |
| 81 | 76 78 80 | 3eqtrd | |- ( w e. CC -> ( 0 ( abs o. - ) w ) = ( abs ` w ) ) |
| 82 | 81 | breq1d | |- ( w e. CC -> ( ( 0 ( abs o. - ) w ) < 1 <-> ( abs ` w ) < 1 ) ) |
| 83 | 82 | adantl | |- ( ( ph /\ w e. CC ) -> ( ( 0 ( abs o. - ) w ) < 1 <-> ( abs ` w ) < 1 ) ) |
| 84 | 0re | |- 0 e. RR |
|
| 85 | elico2 | |- ( ( 0 e. RR /\ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) -> ( ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` w ) e. RR /\ 0 <_ ( abs ` w ) /\ ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
|
| 86 | 84 69 85 | sylancr | |- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` w ) e. RR /\ 0 <_ ( abs ` w ) /\ ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 87 | 73 83 86 | 3imtr4d | |- ( ( ph /\ w e. CC ) -> ( ( 0 ( abs o. - ) w ) < 1 -> ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 88 | 87 | imdistanda | |- ( ph -> ( ( w e. CC /\ ( 0 ( abs o. - ) w ) < 1 ) -> ( w e. CC /\ ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
| 89 | 1xr | |- 1 e. RR* |
|
| 90 | elbl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( w e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( w e. CC /\ ( 0 ( abs o. - ) w ) < 1 ) ) ) |
|
| 91 | 34 74 89 90 | mp3an | |- ( w e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( w e. CC /\ ( 0 ( abs o. - ) w ) < 1 ) ) |
| 92 | absf | |- abs : CC --> RR |
|
| 93 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 94 | elpreima | |- ( abs Fn CC -> ( w e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( w e. CC /\ ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
|
| 95 | 92 93 94 | mp2b | |- ( w e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( w e. CC /\ ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 96 | 88 91 95 | 3imtr4g | |- ( ph -> ( w e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> w e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
| 97 | 96 | ssrdv | |- ( ph -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 98 | 51 97 | sstrd | |- ( ph -> ( S \ { 1 } ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
| 99 | 98 | resmptd | |- ( ph -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) ) |
| 100 | 6 | reseq1i | |- ( F |` ( S \ { 1 } ) ) = ( ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) |
| 101 | difss | |- ( S \ { 1 } ) C_ S |
|
| 102 | resmpt | |- ( ( S \ { 1 } ) C_ S -> ( ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 103 | 101 102 | ax-mp | |- ( ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
| 104 | 100 103 | eqtri | |- ( F |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
| 105 | 99 104 | eqtr4di | |- ( ph -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( F |` ( S \ { 1 } ) ) ) |
| 106 | cnvimass | |- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) C_ dom abs |
|
| 107 | 92 | fdmi | |- dom abs = CC |
| 108 | 106 107 | sseqtri | |- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) C_ CC |
| 109 | 108 | sseli | |- ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -> x e. CC ) |
| 110 | fveq2 | |- ( n = j -> ( A ` n ) = ( A ` j ) ) |
|
| 111 | oveq2 | |- ( n = j -> ( x ^ n ) = ( x ^ j ) ) |
|
| 112 | 110 111 | oveq12d | |- ( n = j -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` j ) x. ( x ^ j ) ) ) |
| 113 | 112 | cbvsumv | |- sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ j e. NN0 ( ( A ` j ) x. ( x ^ j ) ) |
| 114 | 65 | pserval2 | |- ( ( x e. CC /\ j e. NN0 ) -> ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) = ( ( A ` j ) x. ( x ^ j ) ) ) |
| 115 | 114 | sumeq2dv | |- ( x e. CC -> sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) = sum_ j e. NN0 ( ( A ` j ) x. ( x ^ j ) ) ) |
| 116 | 113 115 | eqtr4id | |- ( x e. CC -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) ) |
| 117 | 109 116 | syl | |- ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) ) |
| 118 | 117 | mpteq2ia | |- ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) = ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) ) |
| 119 | eqid | |- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) = ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
|
| 120 | eqid | |- if ( sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` v ) + sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` v ) + 1 ) ) = if ( sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` v ) + sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` v ) + 1 ) ) |
|
| 121 | 65 118 1 66 119 120 | psercn | |- ( ph -> ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) ) |
| 122 | rescncf | |- ( ( S \ { 1 } ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) ) |
|
| 123 | 98 121 122 | sylc | |- ( ph -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) |
| 124 | 105 123 | eqeltrrd | |- ( ph -> ( F |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) |
| 125 | 124 | adantr | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) |
| 126 | 101 15 | sstri | |- ( S \ { 1 } ) C_ CC |
| 127 | ssid | |- CC C_ CC |
|
| 128 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) = ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) |
|
| 129 | 38 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 130 | 129 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 131 | 38 128 130 | cncfcn | |- ( ( ( S \ { 1 } ) C_ CC /\ CC C_ CC ) -> ( ( S \ { 1 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 132 | 126 127 131 | mp2an | |- ( ( S \ { 1 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) |
| 133 | 125 132 | eleqtrdi | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 134 | simpr | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> y e. ( S \ { 1 } ) ) |
|
| 135 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( S \ { 1 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) e. ( TopOn ` ( S \ { 1 } ) ) ) |
|
| 136 | 129 126 135 | mp2an | |- ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) e. ( TopOn ` ( S \ { 1 } ) ) |
| 137 | 136 | toponunii | |- ( S \ { 1 } ) = U. ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) |
| 138 | 137 | cncnpi | |- ( ( ( F |` ( S \ { 1 } ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 139 | 133 134 138 | syl2anc | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 140 | 38 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 141 | cnex | |- CC e. _V |
|
| 142 | 141 15 | ssexi | |- S e. _V |
| 143 | restabs | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( S \ { 1 } ) C_ S /\ S e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) = ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) ) |
|
| 144 | 140 101 142 143 | mp3an | |- ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) = ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) |
| 145 | 144 | oveq1i | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) |
| 146 | 145 | fveq1i | |- ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) |
| 147 | 139 146 | eleqtrrdi | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 148 | resttop | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. _V ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
|
| 149 | 140 142 148 | mp2an | |- ( ( TopOpen ` CCfld ) |`t S ) e. Top |
| 150 | 149 | a1i | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 151 | 101 | a1i | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( S \ { 1 } ) C_ S ) |
| 152 | 10 | snssd | |- ( ph -> { 1 } C_ S ) |
| 153 | 38 | cnfldhaus | |- ( TopOpen ` CCfld ) e. Haus |
| 154 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 155 | 154 | sncld | |- ( ( ( TopOpen ` CCfld ) e. Haus /\ 1 e. CC ) -> { 1 } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 156 | 153 14 155 | mp2an | |- { 1 } e. ( Clsd ` ( TopOpen ` CCfld ) ) |
| 157 | 154 | restcldi | |- ( ( S C_ CC /\ { 1 } e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ { 1 } C_ S ) -> { 1 } e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t S ) ) ) |
| 158 | 15 156 157 | mp3an12 | |- ( { 1 } C_ S -> { 1 } e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t S ) ) ) |
| 159 | 154 | restuni | |- ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 160 | 140 15 159 | mp2an | |- S = U. ( ( TopOpen ` CCfld ) |`t S ) |
| 161 | 160 | cldopn | |- ( { 1 } e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t S ) ) -> ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 162 | 152 158 161 | 3syl | |- ( ph -> ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 163 | 160 | isopn3 | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ ( S \ { 1 } ) C_ S ) -> ( ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) <-> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) = ( S \ { 1 } ) ) ) |
| 164 | 149 101 163 | mp2an | |- ( ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) <-> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) = ( S \ { 1 } ) ) |
| 165 | 162 164 | sylib | |- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) = ( S \ { 1 } ) ) |
| 166 | 165 | eleq2d | |- ( ph -> ( y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) <-> y e. ( S \ { 1 } ) ) ) |
| 167 | 166 | biimpar | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) ) |
| 168 | 7 | adantr | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> F : S --> CC ) |
| 169 | 160 154 | cnprest | |- ( ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ ( S \ { 1 } ) C_ S ) /\ ( y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) /\ F : S --> CC ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
| 170 | 150 151 167 168 169 | syl22anc | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
| 171 | 147 170 | mpbird | |- ( ( ph /\ y e. ( S \ { 1 } ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 172 | 50 171 | sylan2br | |- ( ( ph /\ ( y e. S /\ y =/= 1 ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 173 | 172 | anassrs | |- ( ( ( ph /\ y e. S ) /\ y =/= 1 ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 174 | 49 173 | pm2.61dane | |- ( ( ph /\ y e. S ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 175 | 174 | ralrimiva | |- ( ph -> A. y e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 176 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
|
| 177 | 129 15 176 | mp2an | |- ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) |
| 178 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( F : S --> CC /\ A. y e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) ) |
|
| 179 | 177 129 178 | mp2an | |- ( F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( F : S --> CC /\ A. y e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
| 180 | 7 175 179 | sylanbrc | |- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
| 181 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 182 | 38 181 130 | cncfcn | |- ( ( S C_ CC /\ CC C_ CC ) -> ( S -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
| 183 | 15 127 182 | mp2an | |- ( S -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) |
| 184 | 180 183 | eleqtrrdi | |- ( ph -> F e. ( S -cn-> CC ) ) |