This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnprest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| cnprest.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | cnprest | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnprest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cnprest.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | cnptop2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐾 ∈ Top ) | |
| 4 | 3 | a1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐾 ∈ Top ) ) |
| 5 | cnptop2 | ⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) → 𝐾 ∈ Top ) | |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) → 𝐾 ∈ Top ) ) |
| 7 | 1 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 9 | simp2l | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝑃 ∈ 𝐴 ) |
| 11 | 10 | fvresd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 12 | 11 | eqcomd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝐹 ‘ 𝑃 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ) |
| 13 | 12 | eleq1d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ↔ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 ) ) |
| 14 | inss1 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 | |
| 15 | imass2 | ⊢ ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 → ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐹 “ 𝑥 ) ) | |
| 16 | sstr2 | ⊢ ( ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ ( 𝐹 “ 𝑥 ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) | |
| 17 | 14 15 16 | mp2b | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) |
| 18 | 17 | anim2i | ⊢ ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) |
| 19 | 18 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) |
| 20 | simp1l | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐽 ∈ Top ) | |
| 21 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) |
| 23 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) → ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∈ 𝐽 ) | |
| 24 | 23 | 3com23 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∈ 𝐽 ) |
| 25 | 24 | 3expia | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∈ 𝐽 ) → ( 𝑥 ∈ 𝐽 → ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∈ 𝐽 ) ) |
| 26 | 20 22 25 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝑥 ∈ 𝐽 → ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∈ 𝐽 ) ) |
| 27 | elin | ⊢ ( 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ↔ ( 𝑃 ∈ 𝑥 ∧ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | |
| 28 | 27 | simplbi2com | ⊢ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( 𝑃 ∈ 𝑥 → 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
| 29 | 9 28 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝑃 ∈ 𝑥 → 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
| 30 | sslin | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 → ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( 𝑥 ∩ 𝐴 ) ) | |
| 31 | 8 30 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( 𝑥 ∩ 𝐴 ) ) |
| 32 | imass2 | ⊢ ( ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( 𝑥 ∩ 𝐴 ) → ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ) |
| 34 | sstr2 | ⊢ ( ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 → ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ 𝑦 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 → ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ 𝑦 ) ) |
| 36 | 29 35 | anim12d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) → ( 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∧ ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ 𝑦 ) ) ) |
| 37 | 26 36 | anim12d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝑥 ∈ 𝐽 ∧ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) → ( ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∈ 𝐽 ∧ ( 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∧ ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ 𝑦 ) ) ) ) |
| 38 | eleq2 | ⊢ ( 𝑧 = ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) → ( 𝑃 ∈ 𝑧 ↔ 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | |
| 39 | imaeq2 | ⊢ ( 𝑧 = ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) → ( 𝐹 “ 𝑧 ) = ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | |
| 40 | 39 | sseq1d | ⊢ ( 𝑧 = ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ↔ ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ 𝑦 ) ) |
| 41 | 38 40 | anbi12d | ⊢ ( 𝑧 = ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( 𝑃 ∈ 𝑧 ∧ ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∧ ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ 𝑦 ) ) ) |
| 42 | 41 | rspcev | ⊢ ( ( ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∈ 𝐽 ∧ ( 𝑃 ∈ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ∧ ( 𝐹 “ ( 𝑥 ∩ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ⊆ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝑃 ∈ 𝑧 ∧ ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ) ) |
| 43 | 37 42 | syl6 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝑥 ∈ 𝐽 ∧ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝑃 ∈ 𝑧 ∧ ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 44 | 43 | expdimp | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑥 ∈ 𝐽 ) → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) → ∃ 𝑧 ∈ 𝐽 ( 𝑃 ∈ 𝑧 ∧ ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 45 | 44 | rexlimdva | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) → ∃ 𝑧 ∈ 𝐽 ( 𝑃 ∈ 𝑧 ∧ ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 46 | eleq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥 ) ) | |
| 47 | imaeq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 “ 𝑧 ) = ( 𝐹 “ 𝑥 ) ) | |
| 48 | 47 | sseq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
| 49 | 46 48 | anbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑃 ∈ 𝑧 ∧ ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 50 | 49 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝐽 ( 𝑃 ∈ 𝑧 ∧ ( 𝐹 “ 𝑧 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
| 51 | 45 50 | imbitrdi | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 52 | 19 51 | impbid2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) ) |
| 53 | vex | ⊢ 𝑥 ∈ V | |
| 54 | 53 | inex1 | ⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
| 55 | 54 | a1i | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝐴 ) ∈ V ) |
| 56 | 20 | uniexd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ∪ 𝐽 ∈ V ) |
| 57 | simp1r | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐴 ⊆ 𝑋 ) | |
| 58 | 57 1 | sseqtrdi | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 59 | 56 58 | ssexd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐴 ∈ V ) |
| 60 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝑧 = ( 𝑥 ∩ 𝐴 ) ) ) | |
| 61 | 20 59 60 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 𝑧 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 62 | eleq2 | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝐴 ) → ( 𝑃 ∈ 𝑧 ↔ 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 63 | elin | ⊢ ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ↔ ( 𝑃 ∈ 𝑥 ∧ 𝑃 ∈ 𝐴 ) ) | |
| 64 | 63 | rbaib | ⊢ ( 𝑃 ∈ 𝐴 → ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ↔ 𝑃 ∈ 𝑥 ) ) |
| 65 | 10 64 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝑃 ∈ ( 𝑥 ∩ 𝐴 ) ↔ 𝑃 ∈ 𝑥 ) ) |
| 66 | 62 65 | sylan9bbr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( 𝑃 ∈ 𝑧 ↔ 𝑃 ∈ 𝑥 ) ) |
| 67 | simpr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → 𝑧 = ( 𝑥 ∩ 𝐴 ) ) | |
| 68 | 67 | imaeq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) = ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑥 ∩ 𝐴 ) ) ) |
| 69 | inss2 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 | |
| 70 | resima2 | ⊢ ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑥 ∩ 𝐴 ) ) = ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 71 | 69 70 | ax-mp | ⊢ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝑥 ∩ 𝐴 ) ) = ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) |
| 72 | 68 71 | eqtrdi | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) = ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ) |
| 73 | 72 | sseq1d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ↔ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) |
| 74 | 66 73 | anbi12d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) ∧ 𝑧 = ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) ) |
| 75 | 55 61 74 | rexxfr2d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝑦 ) ) ) |
| 76 | 52 75 | bitr4d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 77 | 13 76 | imbi12d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) |
| 78 | 77 | ralbidv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐾 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) |
| 79 | simp2r | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 80 | simp3 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐾 ∈ Top ) | |
| 81 | 57 10 | sseldd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝑃 ∈ 𝑋 ) |
| 82 | 1 2 | iscnp2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 83 | 82 | baib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 84 | 20 80 81 83 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 85 | 79 84 | mpbirand | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 86 | 79 57 | fssresd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝑌 ) |
| 87 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 88 | 20 87 | sylib | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 89 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 90 | 88 57 89 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 91 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 92 | 80 91 | sylib | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 93 | iscnp | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) ) | |
| 94 | 90 92 10 93 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) ) |
| 95 | 86 94 | mpbirand | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ↔ ∀ 𝑦 ∈ 𝐾 ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑧 ∈ ( 𝐽 ↾t 𝐴 ) ( 𝑃 ∈ 𝑧 ∧ ( ( 𝐹 ↾ 𝐴 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) |
| 96 | 78 85 95 | 3bitr4d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐾 ∈ Top ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ) ) |
| 97 | 96 | 3expia | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) → ( 𝐾 ∈ Top → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ) ) ) |
| 98 | 4 6 97 | pm5.21ndd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( ( 𝐽 ↾t 𝐴 ) CnP 𝐾 ) ‘ 𝑃 ) ) ) |