This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abel's theorem, restricted to the [ 0 , 1 ] interval. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth2.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth2.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth2.3 | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| Assertion | abelth2 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth2.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth2.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth2.3 | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 4 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 5 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 6 | 4 5 | sstri | ⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ ℂ ) |
| 8 | 1re | ⊢ 1 ∈ ℝ | |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 𝑧 ∈ ( 0 [,] 1 ) ) | |
| 10 | elicc01 | ⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1 ) ) |
| 12 | 11 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 𝑧 ∈ ℝ ) |
| 13 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 1 − 𝑧 ) ∈ ℝ ) | |
| 14 | 8 12 13 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑧 ) ∈ ℝ ) |
| 15 | 14 | leidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑧 ) ≤ ( 1 − 𝑧 ) ) |
| 16 | 1red | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 1 ∈ ℝ ) | |
| 17 | 11 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 𝑧 ≤ 1 ) |
| 18 | 12 16 17 | abssubge0d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( abs ‘ ( 1 − 𝑧 ) ) = ( 1 − 𝑧 ) ) |
| 19 | 11 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → 0 ≤ 𝑧 ) |
| 20 | 12 19 | absidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( abs ‘ 𝑧 ) = 𝑧 ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − ( abs ‘ 𝑧 ) ) = ( 1 − 𝑧 ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 1 · ( 1 − 𝑧 ) ) ) |
| 23 | 14 | recnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑧 ) ∈ ℂ ) |
| 24 | 23 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 1 − 𝑧 ) ) = ( 1 − 𝑧 ) ) |
| 25 | 22 24 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 1 − 𝑧 ) ) |
| 26 | 15 18 25 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) |
| 27 | 7 26 | ssrabdv | ⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ) |
| 28 | 27 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 29 | 28 3 | eqtr4di | ⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) = 𝐹 ) |
| 30 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 31 | 0le1 | ⊢ 0 ≤ 1 | |
| 32 | 31 | a1i | ⊢ ( 𝜑 → 0 ≤ 1 ) |
| 33 | eqid | ⊢ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 34 | eqid | ⊢ ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 35 | 1 2 30 32 33 34 | abelth | ⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } –cn→ ℂ ) ) |
| 36 | rescncf | ⊢ ( ( 0 [,] 1 ) ⊆ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ∈ ( { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } –cn→ ℂ ) → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) ) | |
| 37 | 27 35 36 | sylc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 1 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ↾ ( 0 [,] 1 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 38 | 29 37 | eqeltrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |