This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rescncf | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| 2 | cncfrss | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐴 ⊆ ℂ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐴 ⊆ ℂ ) |
| 4 | cncfrss2 | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐵 ⊆ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐵 ⊆ ℂ ) |
| 6 | elcncf | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) |
| 8 | 1 7 | mpbid | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 10 | simpl | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐶 ⊆ 𝐴 ) | |
| 11 | 9 10 | fssresd | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 12 | 8 | simprd | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 13 | ssralv | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) | |
| 14 | ssralv | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) | |
| 15 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 16 | fvres | ⊢ ( 𝑤 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 17 | 15 16 | oveqan12d | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 19 | 18 | breq1d | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 20 | 19 | imbi2d | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ↔ ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 21 | 20 | biimprd | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 22 | 21 | ralimdva | ⊢ ( 𝑥 ∈ 𝐶 → ( ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 23 | 14 22 | sylan9 | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 24 | 23 | reximdv | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 25 | 24 | ralimdv | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 26 | 25 | ralimdva | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 27 | 13 26 | syld | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐴 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑤 ) ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) |
| 28 | 10 12 27 | sylc | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) |
| 29 | 10 3 | sstrd | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → 𝐶 ⊆ ℂ ) |
| 30 | elcncf | ⊢ ( ( 𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) → ( ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) | |
| 31 | 29 5 30 | syl2anc | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝐶 ( ( abs ‘ ( 𝑥 − 𝑤 ) ) < 𝑧 → ( abs ‘ ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) − ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ) ) < 𝑦 ) ) ) ) |
| 32 | 11 28 31 | mpbir2and | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) → ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
| 33 | 32 | ex | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) ) |