This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . By adjusting the constant term, we can assume that the entire series converges to 0 . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| Assertion | abelthlem9 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 8 | 7 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 0 ∈ ℕ0 ) |
| 9 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) | |
| 10 | 1 8 9 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
| 11 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 12 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 13 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) | |
| 14 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 15 | 11 12 13 14 2 | isumcl | ⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 17 | 10 16 | subcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
| 18 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 17 18 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 20 | 19 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
| 21 | 7 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 22 | 20 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 23 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 24 | 1z | ⊢ 1 ∈ ℤ | |
| 25 | 23 24 | eqeltrri | ⊢ ( 0 + 1 ) ∈ ℤ |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℤ ) |
| 27 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 28 | 23 | fveq2i | ⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 29 | 27 28 | eqtri | ⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 30 | 29 | eleq2i | ⊢ ( 𝑖 ∈ ℕ ↔ 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 31 | nnnn0 | ⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℕ0 ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ0 ) |
| 33 | eqeq1 | ⊢ ( 𝑘 = 𝑖 → ( 𝑘 = 0 ↔ 𝑖 = 0 ) ) | |
| 34 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑖 ) ) | |
| 35 | 33 34 | ifbieq2d | ⊢ ( 𝑘 = 𝑖 → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
| 36 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) | |
| 37 | ovex | ⊢ ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ V | |
| 38 | fvex | ⊢ ( 𝐴 ‘ 𝑖 ) ∈ V | |
| 39 | 37 38 | ifex | ⊢ if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ∈ V |
| 40 | 35 36 39 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
| 41 | 32 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
| 42 | nnne0 | ⊢ ( 𝑖 ∈ ℕ → 𝑖 ≠ 0 ) | |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ≠ 0 ) |
| 44 | 43 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ¬ 𝑖 = 0 ) |
| 45 | 44 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) = ( 𝐴 ‘ 𝑖 ) ) |
| 46 | 41 45 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 47 | 30 46 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 48 | 26 47 | seqfeq | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) = seq ( 0 + 1 ) ( + , 𝐴 ) ) |
| 49 | 11 12 13 14 2 | isumclim2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
| 50 | 11 21 18 49 | clim2ser | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , 𝐴 ) ⇝ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( seq 0 ( + , 𝐴 ) ‘ 0 ) ) ) |
| 51 | 0z | ⊢ 0 ∈ ℤ | |
| 52 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( + , 𝐴 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) | |
| 53 | 51 52 | ax-mp | ⊢ ( seq 0 ( + , 𝐴 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) |
| 54 | 53 | oveq2i | ⊢ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( seq 0 ( + , 𝐴 ) ‘ 0 ) ) = ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) |
| 55 | 50 54 | breqtrdi | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , 𝐴 ) ⇝ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) ) |
| 56 | 48 55 | eqbrtrd | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) ) |
| 57 | 11 21 22 56 | clim2ser2 | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
| 58 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) ) | |
| 59 | 51 58 | ax-mp | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) |
| 60 | iftrue | ⊢ ( 𝑘 = 0 → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) | |
| 61 | 60 36 37 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 62 | 7 61 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
| 63 | 59 62 | eqtri | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
| 64 | 63 | oveq2i | ⊢ ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 65 | 1 7 9 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
| 66 | npncan2 | ⊢ ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ∧ ( 𝐴 ‘ 0 ) ∈ ℂ ) → ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = 0 ) | |
| 67 | 15 65 66 | syl2anc | ⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = 0 ) |
| 68 | 64 67 | eqtrid | ⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) ) = 0 ) |
| 69 | 57 68 | breqtrd | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ 0 ) |
| 70 | seqex | ⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ∈ V | |
| 71 | c0ex | ⊢ 0 ∈ V | |
| 72 | 70 71 | breldm | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ 0 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 73 | 69 72 | syl | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 74 | eqid | ⊢ ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) | |
| 75 | 20 73 3 4 5 74 69 | abelthlem8 | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 76 | 1 2 3 4 5 | abelthlem2 | ⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 77 | 76 | simpld | ⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
| 78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ 𝑆 ) |
| 79 | 40 | adantl | ⊢ ( ( 𝑥 = 1 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
| 80 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 𝑖 ) = ( 1 ↑ 𝑖 ) ) | |
| 81 | nn0z | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℤ ) | |
| 82 | 1exp | ⊢ ( 𝑖 ∈ ℤ → ( 1 ↑ 𝑖 ) = 1 ) | |
| 83 | 81 82 | syl | ⊢ ( 𝑖 ∈ ℕ0 → ( 1 ↑ 𝑖 ) = 1 ) |
| 84 | 80 83 | sylan9eq | ⊢ ( ( 𝑥 = 1 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑖 ) = 1 ) |
| 85 | 79 84 | oveq12d | ⊢ ( ( 𝑥 = 1 ∧ 𝑖 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
| 86 | 85 | sumeq2dv | ⊢ ( 𝑥 = 1 → Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
| 87 | sumex | ⊢ Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ∈ V | |
| 88 | 86 74 87 | fvmpt | ⊢ ( 1 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
| 89 | 78 88 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
| 90 | 0zd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) | |
| 91 | 40 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
| 92 | 65 15 | subcld | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
| 94 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 95 | 94 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
| 96 | 93 95 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ∈ ℂ ) |
| 97 | 96 | mulridd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
| 98 | 91 97 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
| 99 | 97 96 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ∈ ℂ ) |
| 100 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) | |
| 101 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 102 | 1exp | ⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) | |
| 103 | 101 102 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 104 | 100 103 | sylan9eq | ⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) = 1 ) |
| 105 | 104 | oveq2d | ⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 106 | 105 | sumeq2dv | ⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 107 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑚 ) ) | |
| 108 | 107 | oveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
| 109 | 108 | cbvsumv | ⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) |
| 110 | 106 109 | eqtrdi | ⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
| 111 | sumex | ⊢ Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ∈ V | |
| 112 | 110 6 111 | fvmpt | ⊢ ( 1 ∈ 𝑆 → ( 𝐹 ‘ 1 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
| 113 | 77 112 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
| 114 | 14 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑚 ) · 1 ) = ( 𝐴 ‘ 𝑚 ) ) |
| 115 | 114 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) = Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
| 116 | 113 115 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
| 117 | 116 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) = ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 118 | 15 | subidd | ⊢ ( 𝜑 → ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) = 0 ) |
| 119 | 117 118 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) = 0 ) |
| 120 | 69 119 | breqtrrd | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 121 | 120 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 122 | 11 90 98 99 121 | isumclim | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) = ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 123 | 89 122 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) = ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 124 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑖 ) ) | |
| 125 | 40 124 | oveqan12rd | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑖 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 126 | 125 | sumeq2dv | ⊢ ( 𝑥 = 𝑦 → Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 127 | sumex | ⊢ Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V | |
| 128 | 126 74 127 | fvmpt | ⊢ ( 𝑦 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 129 | 128 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 130 | oveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝑦 ↑ 𝑘 ) = ( 𝑦 ↑ 𝑖 ) ) | |
| 131 | 35 130 | oveq12d | ⊢ ( 𝑘 = 𝑖 → ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 132 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) | |
| 133 | ovex | ⊢ ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V | |
| 134 | 131 132 133 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 135 | 134 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 136 | 5 | ssrab3 | ⊢ 𝑆 ⊆ ℂ |
| 137 | 136 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 138 | 137 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
| 139 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) | |
| 140 | 138 139 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
| 141 | 96 140 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
| 142 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℕ0 ) |
| 143 | 19 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 144 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) | |
| 145 | 138 144 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
| 146 | 143 145 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
| 147 | 146 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
| 148 | 147 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 149 | 45 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 150 | 32 134 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 151 | 34 130 | oveq12d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 152 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) | |
| 153 | ovex | ⊢ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V | |
| 154 | 151 152 153 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 155 | 32 154 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 156 | 149 150 155 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) |
| 157 | 30 156 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) |
| 158 | 26 157 | seqfeq | ⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) = seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
| 159 | 158 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) = seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
| 160 | 18 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 161 | 160 145 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
| 162 | 161 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
| 163 | 162 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 164 | 154 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 165 | 95 140 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
| 166 | 1 2 3 4 5 | abelthlem3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 167 | 11 90 164 165 166 | isumclim2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 168 | fveq2 | ⊢ ( 𝑛 = 𝑖 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑖 ) ) | |
| 169 | oveq2 | ⊢ ( 𝑛 = 𝑖 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑖 ) ) | |
| 170 | 168 169 | oveq12d | ⊢ ( 𝑛 = 𝑖 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) |
| 171 | 170 | cbvsumv | ⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) |
| 172 | 124 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 173 | 172 | sumeq2sdv | ⊢ ( 𝑥 = 𝑦 → Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 174 | 171 173 | eqtrid | ⊢ ( 𝑥 = 𝑦 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 175 | sumex | ⊢ Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V | |
| 176 | 174 6 175 | fvmpt | ⊢ ( 𝑦 ∈ 𝑆 → ( 𝐹 ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 177 | 176 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
| 178 | 167 177 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 179 | 11 142 163 178 | clim2ser | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
| 180 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) ) | |
| 181 | 51 180 | ax-mp | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) |
| 182 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 0 ) ) | |
| 183 | oveq2 | ⊢ ( 𝑘 = 0 → ( 𝑦 ↑ 𝑘 ) = ( 𝑦 ↑ 0 ) ) | |
| 184 | 182 183 | oveq12d | ⊢ ( 𝑘 = 0 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) ) |
| 185 | ovex | ⊢ ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) ∈ V | |
| 186 | 184 152 185 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) ) |
| 187 | 7 186 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) |
| 188 | 181 187 | eqtri | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) |
| 189 | 138 | exp0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ↑ 0 ) = 1 ) |
| 190 | 189 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) = ( ( 𝐴 ‘ 0 ) · 1 ) ) |
| 191 | 65 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
| 192 | 191 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · 1 ) = ( 𝐴 ‘ 0 ) ) |
| 193 | 190 192 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) = ( 𝐴 ‘ 0 ) ) |
| 194 | 188 193 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 195 | 194 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑦 ) − ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) ) |
| 196 | 179 195 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) ) |
| 197 | 159 196 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) ) |
| 198 | 11 142 148 197 | clim2ser2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
| 199 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) ) | |
| 200 | 51 199 | ax-mp | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) |
| 201 | 60 183 | oveq12d | ⊢ ( 𝑘 = 0 → ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) ) |
| 202 | ovex | ⊢ ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) ∈ V | |
| 203 | 201 132 202 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) ) |
| 204 | 7 203 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) |
| 205 | 200 204 | eqtri | ⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) |
| 206 | 189 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · 1 ) ) |
| 207 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 208 | 191 207 | subcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
| 209 | 208 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · 1 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 210 | 206 209 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 211 | 205 210 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 212 | 211 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) ) |
| 213 | 1 2 3 4 5 6 | abelthlem4 | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 214 | 213 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 215 | 214 191 207 | npncand | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 216 | 212 215 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 217 | 198 216 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 218 | 11 90 135 141 217 | isumclim | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 219 | 129 218 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
| 220 | 123 219 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) = ( ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) − ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) ) |
| 221 | 213 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
| 222 | 221 78 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
| 223 | 222 214 207 | nnncan2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) − ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 224 | 220 223 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 225 | 224 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 226 | 225 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ↔ ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 227 | 226 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
| 228 | 227 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
| 229 | 228 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
| 230 | 229 | adantr | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
| 231 | 75 230 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |