This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say a mapping from metric C to metric D is continuous at point P . (Contributed by NM, 11-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metcnp | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | 1 2 | metcnp3 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 4 | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) | |
| 5 | 4 | ad2antlr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → Fun 𝐹 ) |
| 6 | simpll1 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | simpll3 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑃 ∈ 𝑋 ) | |
| 8 | rpxr | ⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ* ) | |
| 9 | 8 | ad2antll | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ* ) |
| 10 | blssm | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑋 ) | |
| 11 | 6 7 9 10 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ 𝑋 ) |
| 12 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 13 | 12 | ad2antlr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → dom 𝐹 = 𝑋 ) |
| 14 | 11 13 | sseqtrrd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ dom 𝐹 ) |
| 15 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) | |
| 16 | 5 14 15 | syl2anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 17 | elbl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ* ) → ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) ) ) | |
| 18 | 6 7 9 17 | syl3anc | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ↔ ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) ) ) |
| 19 | 18 | imbi1d | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 20 | impexp | ⊢ ( ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) | |
| 21 | simpl2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 23 | simplrl | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑦 ∈ ℝ+ ) | |
| 24 | 23 | rpxrd | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑦 ∈ ℝ* ) |
| 25 | simpllr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 26 | 7 | adantr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) |
| 27 | 25 26 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ) |
| 28 | simplr | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 29 | 28 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) |
| 30 | elbl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑦 ∈ ℝ* ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) | |
| 31 | 22 24 27 29 30 | syl22anc | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) |
| 32 | 31 | imbi2d | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 33 | 32 | pm5.74da | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 34 | 20 33 | bitrid | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( ( 𝑤 ∈ 𝑋 ∧ ( 𝑃 𝐶 𝑤 ) < 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 35 | 19 34 | bitrd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝑤 ∈ 𝑋 → ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 36 | 35 | ralbidv2 | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑤 ∈ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ( 𝐹 ‘ 𝑤 ) ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 37 | 16 36 | bitrd | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 38 | 37 | anassrs | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ) → ( ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 39 | 38 | rexbidva | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 40 | 39 | ralbidva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 41 | 40 | pm5.32da | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐶 ) 𝑧 ) ) ⊆ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 42 | 3 41 | bitrd | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑃 𝐶 𝑤 ) < 𝑧 → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |