This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009) (Proof shortened by Mario Carneiro, 5-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metrest.1 | ⊢ 𝐷 = ( 𝐶 ↾ ( 𝑌 × 𝑌 ) ) | |
| metrest.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | ||
| metrest.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metrest | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metrest.1 | ⊢ 𝐷 = ( 𝐶 ↾ ( 𝑌 × 𝑌 ) ) | |
| 2 | metrest.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 3 | metrest.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 4 | inss1 | ⊢ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 | |
| 5 | 2 | elmopn2 | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑢 ∈ 𝐽 ↔ ( 𝑢 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) ) ) |
| 6 | 5 | simplbda | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) |
| 8 | ssralv | ⊢ ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑢 → ( ∀ 𝑦 ∈ 𝑢 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) ) | |
| 9 | 4 7 8 | mpsyl | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 ) |
| 10 | ssrin | ⊢ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) | |
| 11 | 10 | reximi | ⊢ ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) |
| 12 | 11 | ralimi | ⊢ ( ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ⊆ 𝑢 → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) |
| 13 | 9 12 | syl | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) |
| 14 | inss2 | ⊢ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 | |
| 15 | 13 14 | jctil | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) |
| 16 | sseq1 | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ⊆ 𝑌 ↔ ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 ) ) | |
| 17 | sseq2 | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) | |
| 18 | 17 | rexbidv | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) |
| 19 | 18 | raleqbi1dv | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) |
| 20 | 16 19 | anbi12d | ⊢ ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ↔ ( ( 𝑢 ∩ 𝑌 ) ⊆ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝑢 ∩ 𝑌 ) ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ ( 𝑢 ∩ 𝑌 ) ) ) ) |
| 21 | 15 20 | syl5ibrcom | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑢 ∈ 𝐽 ) → ( 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 22 | 21 | rexlimdva | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) → ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 23 | 2 | mopntop | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → 𝐽 ∈ Top ) |
| 25 | ssel2 | ⊢ ( ( 𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑌 ) | |
| 26 | ssel2 | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑋 ) | |
| 27 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 28 | 2 | blopn | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝐽 ) |
| 29 | eleq1a | ⊢ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∈ 𝐽 → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 31 | 30 | 3expa | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 32 | 27 31 | sylan2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 33 | 32 | rexlimdva | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 34 | 26 33 | sylan2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 35 | 34 | anassrs | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 36 | 25 35 | sylan2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 37 | 36 | anassrs | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 38 | 37 | rexlimdva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → 𝑧 ∈ 𝐽 ) ) |
| 39 | 38 | adantrd | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) → 𝑧 ∈ 𝐽 ) ) |
| 40 | 39 | adantrr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) → 𝑧 ∈ 𝐽 ) ) |
| 41 | 40 | abssdv | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ⊆ 𝐽 ) |
| 42 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ⊆ 𝐽 ) → ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∈ 𝐽 ) | |
| 43 | 24 41 42 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∈ 𝐽 ) |
| 44 | oveq1 | ⊢ ( 𝑦 = 𝑢 → ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) = ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) | |
| 45 | 44 | ineq1d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) = ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) |
| 46 | 45 | sseq1d | ⊢ ( 𝑦 = 𝑢 → ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 47 | 46 | rexbidv | ⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 48 | 47 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ( 𝑢 ∈ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 49 | 48 | ad2antll | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 50 | ssel | ⊢ ( 𝑥 ⊆ 𝑌 → ( 𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌 ) ) | |
| 51 | ssel | ⊢ ( 𝑌 ⊆ 𝑋 → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑋 ) ) | |
| 52 | blcntr | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) | |
| 53 | 52 | a1d | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 54 | 53 | ancld | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 55 | 54 | 3expa | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 56 | 55 | reximdva | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 57 | 56 | ex | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑢 ∈ 𝑋 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 58 | 51 57 | sylan9r | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑢 ∈ 𝑌 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 59 | 50 58 | sylan9r | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( 𝑢 ∈ 𝑥 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 60 | 59 | adantrr | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ( ∃ 𝑟 ∈ ℝ+ ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) ) |
| 61 | 49 60 | mpdd | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 62 | 44 | eleq2d | ⊢ ( 𝑦 = 𝑢 → ( 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ↔ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 63 | 46 62 | anbi12d | ⊢ ( 𝑦 = 𝑢 → ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 64 | 63 | rexbidv | ⊢ ( 𝑦 = 𝑢 → ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 65 | 64 | rspcev | ⊢ ( ( 𝑢 ∈ 𝑥 ∧ ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) ) → ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 66 | 65 | ex | ⊢ ( 𝑢 ∈ 𝑥 → ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑢 ( ball ‘ 𝐶 ) 𝑟 ) ) → ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 67 | 61 66 | sylcom | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 68 | simprl | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → 𝑥 ⊆ 𝑌 ) | |
| 69 | 68 | sseld | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → 𝑢 ∈ 𝑌 ) ) |
| 70 | 67 69 | jcad | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 → ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ) ) |
| 71 | elin | ⊢ ( 𝑢 ∈ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ↔ ( 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ 𝑢 ∈ 𝑌 ) ) | |
| 72 | ssel2 | ⊢ ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) → 𝑢 ∈ 𝑥 ) | |
| 73 | 71 72 | sylan2br | ⊢ ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ ( 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ 𝑢 ∈ 𝑌 ) ) → 𝑢 ∈ 𝑥 ) |
| 74 | 73 | expr | ⊢ ( ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥 ) ) |
| 75 | 74 | rexlimivw | ⊢ ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥 ) ) |
| 76 | 75 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) → ( 𝑢 ∈ 𝑌 → 𝑢 ∈ 𝑥 ) ) |
| 77 | 76 | imp | ⊢ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) → 𝑢 ∈ 𝑥 ) |
| 78 | 70 77 | impbid1 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ) ) |
| 79 | elin | ⊢ ( 𝑢 ∈ ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ↔ ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∧ 𝑢 ∈ 𝑌 ) ) | |
| 80 | eluniab | ⊢ ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ↔ ∃ 𝑧 ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ) | |
| 81 | ancom | ⊢ ( ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ↔ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ∧ 𝑢 ∈ 𝑧 ) ) | |
| 82 | anass | ⊢ ( ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ∧ 𝑢 ∈ 𝑧 ) ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) | |
| 83 | r19.41v | ⊢ ( ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) | |
| 84 | 83 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 85 | r19.41v | ⊢ ( ∃ 𝑦 ∈ 𝑥 ( ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) | |
| 86 | 84 85 | bitr2i | ⊢ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 87 | 81 82 86 | 3bitri | ⊢ ( ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 88 | 87 | exbii | ⊢ ( ∃ 𝑧 ( 𝑢 ∈ 𝑧 ∧ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 89 | ovex | ⊢ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∈ V | |
| 90 | ineq1 | ⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑧 ∩ 𝑌 ) = ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) | |
| 91 | 90 | sseq1d | ⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 92 | eleq2 | ⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( 𝑢 ∈ 𝑧 ↔ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) | |
| 93 | 91 92 | anbi12d | ⊢ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) → ( ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ↔ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) ) |
| 94 | 89 93 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 95 | 94 | rexbii | ⊢ ( ∃ 𝑟 ∈ ℝ+ ∃ 𝑧 ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 96 | rexcom4 | ⊢ ( ∃ 𝑟 ∈ ℝ+ ∃ 𝑧 ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) | |
| 97 | 95 96 | bitr3i | ⊢ ( ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 98 | 97 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) |
| 99 | rexcom4 | ⊢ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑧 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ) | |
| 100 | 98 99 | bitr2i | ⊢ ( ∃ 𝑧 ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 101 | 80 88 100 | 3bitri | ⊢ ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ↔ ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ) |
| 102 | 101 | anbi1i | ⊢ ( ( 𝑢 ∈ ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∧ 𝑢 ∈ 𝑌 ) ↔ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ) |
| 103 | 79 102 | bitr2i | ⊢ ( ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ∧ 𝑢 ∈ ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ) ∧ 𝑢 ∈ 𝑌 ) ↔ 𝑢 ∈ ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) |
| 104 | 78 103 | bitrdi | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ( 𝑢 ∈ 𝑥 ↔ 𝑢 ∈ ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) ) |
| 105 | 104 | eqrdv | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → 𝑥 = ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) |
| 106 | ineq1 | ⊢ ( 𝑢 = ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } → ( 𝑢 ∩ 𝑌 ) = ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) | |
| 107 | 106 | rspceeqv | ⊢ ( ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∈ 𝐽 ∧ 𝑥 = ( ∪ { 𝑧 ∣ ( ∃ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ 𝑧 = ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑥 ) } ∩ 𝑌 ) ) → ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) |
| 108 | 43 105 107 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) → ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) |
| 109 | 108 | ex | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) → ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 110 | 22 109 | impbid | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 111 | simpr | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) | |
| 112 | 26 111 | elind | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) |
| 113 | 1 | blres | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ) |
| 114 | 113 | sseq1d | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 115 | 114 | 3expa | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 116 | 27 115 | sylan2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 117 | 116 | rexbidva | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∩ 𝑌 ) ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 118 | 112 117 | sylan2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 119 | 118 | anassrs | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 120 | 25 119 | sylan2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 121 | 120 | anassrs | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 122 | 121 | ralbidva | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) |
| 123 | 122 | pm5.32da | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( ( 𝑦 ( ball ‘ 𝐶 ) 𝑟 ) ∩ 𝑌 ) ⊆ 𝑥 ) ) ) |
| 124 | 110 123 | bitr4d | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
| 125 | id | ⊢ ( 𝑌 ⊆ 𝑋 → 𝑌 ⊆ 𝑋 ) | |
| 126 | 2 | mopnm | ⊢ ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 127 | ssexg | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝑌 ∈ V ) | |
| 128 | 125 126 127 | syl2anr | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 129 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) ) | |
| 130 | 23 128 129 | syl2an2r | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑢 ∈ 𝐽 𝑥 = ( 𝑢 ∩ 𝑌 ) ) ) |
| 131 | xmetres2 | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐶 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 132 | 1 131 | eqeltrid | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 133 | 3 | elmopn2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) → ( 𝑥 ∈ 𝐾 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
| 134 | 132 133 | syl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐾 ↔ ( 𝑥 ⊆ 𝑌 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑟 ∈ ℝ+ ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) ) ) |
| 135 | 124 130 134 | 3bitr4d | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝑌 ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 136 | 135 | eqrdv | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = 𝐾 ) |