This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of Munkres p. 107. (Contributed by Raph Levien, 20-Nov-2006) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnsscnp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cncnpi | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsscnp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1 2 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 5 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑦 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 6 | 5 | ad2ant2r | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 7 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) → 𝐴 ∈ 𝑋 ) |
| 9 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) | |
| 10 | 3 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 11 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ ∪ 𝐾 → 𝐹 Fn 𝑋 ) | |
| 12 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝑦 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝑦 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) ) |
| 14 | 8 9 13 | mpbir2and | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) → 𝐴 ∈ ( ◡ 𝐹 “ 𝑦 ) ) |
| 15 | eqimss | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) | |
| 16 | 15 | biantrud | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐴 ∈ 𝑥 ↔ ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 17 | eleq2 | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 18 | 16 17 | bitr3d | ⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ↔ 𝐴 ∈ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 19 | 18 | rspcev | ⊢ ( ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 20 | 6 14 19 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 21 | 20 | expr | ⊢ ( ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 22 | 21 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 23 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 25 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 26 | 24 25 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 27 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐾 ∈ Top ) |
| 29 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 30 | 28 29 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 31 | iscnp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) ) | |
| 32 | 26 30 7 31 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) ) |
| 33 | 4 22 32 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) |