This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resco | |- ( ( A o. B ) |` C ) = ( A o. ( B |` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( ( A o. B ) |` C ) |
|
| 2 | relco | |- Rel ( A o. ( B |` C ) ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | brco | |- ( x ( A o. B ) y <-> E. z ( x B z /\ z A y ) ) |
| 6 | 5 | anbi2i | |- ( ( x e. C /\ x ( A o. B ) y ) <-> ( x e. C /\ E. z ( x B z /\ z A y ) ) ) |
| 7 | 19.42v | |- ( E. z ( x e. C /\ ( x B z /\ z A y ) ) <-> ( x e. C /\ E. z ( x B z /\ z A y ) ) ) |
|
| 8 | vex | |- z e. _V |
|
| 9 | 8 | brresi | |- ( x ( B |` C ) z <-> ( x e. C /\ x B z ) ) |
| 10 | 9 | anbi1i | |- ( ( x ( B |` C ) z /\ z A y ) <-> ( ( x e. C /\ x B z ) /\ z A y ) ) |
| 11 | anass | |- ( ( ( x e. C /\ x B z ) /\ z A y ) <-> ( x e. C /\ ( x B z /\ z A y ) ) ) |
|
| 12 | 10 11 | bitr2i | |- ( ( x e. C /\ ( x B z /\ z A y ) ) <-> ( x ( B |` C ) z /\ z A y ) ) |
| 13 | 12 | exbii | |- ( E. z ( x e. C /\ ( x B z /\ z A y ) ) <-> E. z ( x ( B |` C ) z /\ z A y ) ) |
| 14 | 6 7 13 | 3bitr2i | |- ( ( x e. C /\ x ( A o. B ) y ) <-> E. z ( x ( B |` C ) z /\ z A y ) ) |
| 15 | 4 | brresi | |- ( x ( ( A o. B ) |` C ) y <-> ( x e. C /\ x ( A o. B ) y ) ) |
| 16 | 3 4 | brco | |- ( x ( A o. ( B |` C ) ) y <-> E. z ( x ( B |` C ) z /\ z A y ) ) |
| 17 | 14 15 16 | 3bitr4i | |- ( x ( ( A o. B ) |` C ) y <-> x ( A o. ( B |` C ) ) y ) |
| 18 | 1 2 17 | eqbrriv | |- ( ( A o. B ) |` C ) = ( A o. ( B |` C ) ) |