This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the elements of S commute, the elements of a subset T also commute. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntzmhm.z | |- Z = ( Cntz ` G ) |
|
| Assertion | cntzidss | |- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ ( Z ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | |- Z = ( Cntz ` G ) |
|
| 2 | simpr | |- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ S ) |
|
| 3 | simpl | |- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Z ` S ) ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 4 1 | cntzssv | |- ( Z ` S ) C_ ( Base ` G ) |
| 6 | 3 5 | sstrdi | |- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Base ` G ) ) |
| 7 | 4 1 | cntz2ss | |- ( ( S C_ ( Base ` G ) /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) ) |
| 8 | 6 7 | sylancom | |- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> ( Z ` S ) C_ ( Z ` T ) ) |
| 9 | 3 8 | sstrd | |- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> S C_ ( Z ` T ) ) |
| 10 | 2 9 | sstrd | |- ( ( S C_ ( Z ` S ) /\ T C_ S ) -> T C_ ( Z ` T ) ) |