This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzi.p | |- .+ = ( +g ` M ) |
|
| cntzi.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntzi | |- ( ( X e. ( Z ` S ) /\ Y e. S ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzi.p | |- .+ = ( +g ` M ) |
|
| 2 | cntzi.z | |- Z = ( Cntz ` M ) |
|
| 3 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 4 | 3 2 | cntzrcl | |- ( X e. ( Z ` S ) -> ( M e. _V /\ S C_ ( Base ` M ) ) ) |
| 5 | 3 1 2 | elcntz | |- ( S C_ ( Base ` M ) -> ( X e. ( Z ` S ) <-> ( X e. ( Base ` M ) /\ A. y e. S ( X .+ y ) = ( y .+ X ) ) ) ) |
| 6 | 4 5 | simpl2im | |- ( X e. ( Z ` S ) -> ( X e. ( Z ` S ) <-> ( X e. ( Base ` M ) /\ A. y e. S ( X .+ y ) = ( y .+ X ) ) ) ) |
| 7 | 6 | simplbda | |- ( ( X e. ( Z ` S ) /\ X e. ( Z ` S ) ) -> A. y e. S ( X .+ y ) = ( y .+ X ) ) |
| 8 | 7 | anidms | |- ( X e. ( Z ` S ) -> A. y e. S ( X .+ y ) = ( y .+ X ) ) |
| 9 | oveq2 | |- ( y = Y -> ( X .+ y ) = ( X .+ Y ) ) |
|
| 10 | oveq1 | |- ( y = Y -> ( y .+ X ) = ( Y .+ X ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( y = Y -> ( ( X .+ y ) = ( y .+ X ) <-> ( X .+ Y ) = ( Y .+ X ) ) ) |
| 12 | 11 | rspccva | |- ( ( A. y e. S ( X .+ y ) = ( y .+ X ) /\ Y e. S ) -> ( X .+ Y ) = ( Y .+ X ) ) |
| 13 | 8 12 | sylan | |- ( ( X e. ( Z ` S ) /\ Y e. S ) -> ( X .+ Y ) = ( Y .+ X ) ) |