This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ores | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-> B ) |
|
| 2 | f1f1orn | |- ( ( F |` C ) : C -1-1-> B -> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) |
|
| 3 | 1 2 | syl | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) |
| 4 | df-ima | |- ( F " C ) = ran ( F |` C ) |
|
| 5 | f1oeq3 | |- ( ( F " C ) = ran ( F |` C ) -> ( ( F |` C ) : C -1-1-onto-> ( F " C ) <-> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( F |` C ) : C -1-1-onto-> ( F " C ) <-> ( F |` C ) : C -1-1-onto-> ran ( F |` C ) ) |
| 7 | 3 6 | sylibr | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |