This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1elima | |- ( ( F : A -1-1-> B /\ X e. A /\ Y C_ A ) -> ( ( F ` X ) e. ( F " Y ) <-> X e. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn | |- ( F : A -1-1-> B -> F Fn A ) |
|
| 2 | fvelimab | |- ( ( F Fn A /\ Y C_ A ) -> ( ( F ` X ) e. ( F " Y ) <-> E. z e. Y ( F ` z ) = ( F ` X ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A -1-1-> B /\ Y C_ A ) -> ( ( F ` X ) e. ( F " Y ) <-> E. z e. Y ( F ` z ) = ( F ` X ) ) ) |
| 4 | 3 | 3adant2 | |- ( ( F : A -1-1-> B /\ X e. A /\ Y C_ A ) -> ( ( F ` X ) e. ( F " Y ) <-> E. z e. Y ( F ` z ) = ( F ` X ) ) ) |
| 5 | ssel | |- ( Y C_ A -> ( z e. Y -> z e. A ) ) |
|
| 6 | 5 | impac | |- ( ( Y C_ A /\ z e. Y ) -> ( z e. A /\ z e. Y ) ) |
| 7 | f1fveq | |- ( ( F : A -1-1-> B /\ ( z e. A /\ X e. A ) ) -> ( ( F ` z ) = ( F ` X ) <-> z = X ) ) |
|
| 8 | 7 | ancom2s | |- ( ( F : A -1-1-> B /\ ( X e. A /\ z e. A ) ) -> ( ( F ` z ) = ( F ` X ) <-> z = X ) ) |
| 9 | 8 | biimpd | |- ( ( F : A -1-1-> B /\ ( X e. A /\ z e. A ) ) -> ( ( F ` z ) = ( F ` X ) -> z = X ) ) |
| 10 | 9 | anassrs | |- ( ( ( F : A -1-1-> B /\ X e. A ) /\ z e. A ) -> ( ( F ` z ) = ( F ` X ) -> z = X ) ) |
| 11 | eleq1 | |- ( z = X -> ( z e. Y <-> X e. Y ) ) |
|
| 12 | 11 | biimpcd | |- ( z e. Y -> ( z = X -> X e. Y ) ) |
| 13 | 10 12 | sylan9 | |- ( ( ( ( F : A -1-1-> B /\ X e. A ) /\ z e. A ) /\ z e. Y ) -> ( ( F ` z ) = ( F ` X ) -> X e. Y ) ) |
| 14 | 13 | anasss | |- ( ( ( F : A -1-1-> B /\ X e. A ) /\ ( z e. A /\ z e. Y ) ) -> ( ( F ` z ) = ( F ` X ) -> X e. Y ) ) |
| 15 | 6 14 | sylan2 | |- ( ( ( F : A -1-1-> B /\ X e. A ) /\ ( Y C_ A /\ z e. Y ) ) -> ( ( F ` z ) = ( F ` X ) -> X e. Y ) ) |
| 16 | 15 | anassrs | |- ( ( ( ( F : A -1-1-> B /\ X e. A ) /\ Y C_ A ) /\ z e. Y ) -> ( ( F ` z ) = ( F ` X ) -> X e. Y ) ) |
| 17 | 16 | rexlimdva | |- ( ( ( F : A -1-1-> B /\ X e. A ) /\ Y C_ A ) -> ( E. z e. Y ( F ` z ) = ( F ` X ) -> X e. Y ) ) |
| 18 | 17 | 3impa | |- ( ( F : A -1-1-> B /\ X e. A /\ Y C_ A ) -> ( E. z e. Y ( F ` z ) = ( F ` X ) -> X e. Y ) ) |
| 19 | eqid | |- ( F ` X ) = ( F ` X ) |
|
| 20 | fveqeq2 | |- ( z = X -> ( ( F ` z ) = ( F ` X ) <-> ( F ` X ) = ( F ` X ) ) ) |
|
| 21 | 20 | rspcev | |- ( ( X e. Y /\ ( F ` X ) = ( F ` X ) ) -> E. z e. Y ( F ` z ) = ( F ` X ) ) |
| 22 | 19 21 | mpan2 | |- ( X e. Y -> E. z e. Y ( F ` z ) = ( F ` X ) ) |
| 23 | 18 22 | impbid1 | |- ( ( F : A -1-1-> B /\ X e. A /\ Y C_ A ) -> ( E. z e. Y ( F ` z ) = ( F ` X ) <-> X e. Y ) ) |
| 24 | 4 23 | bitrd | |- ( ( F : A -1-1-> B /\ X e. A /\ Y C_ A ) -> ( ( F ` X ) e. ( F " Y ) <-> X e. Y ) ) |