This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcl.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| seqcl.2 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
||
| seqcl.3 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
||
| Assertion | seqcl | |- ( ph -> ( seq M ( .+ , F ) ` N ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcl.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | seqcl.2 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
|
| 3 | seqcl.3 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 4 | fveq2 | |- ( x = M -> ( F ` x ) = ( F ` M ) ) |
|
| 5 | 4 | eleq1d | |- ( x = M -> ( ( F ` x ) e. S <-> ( F ` M ) e. S ) ) |
| 6 | 2 | ralrimiva | |- ( ph -> A. x e. ( M ... N ) ( F ` x ) e. S ) |
| 7 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 8 | 1 7 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 9 | 5 6 8 | rspcdva | |- ( ph -> ( F ` M ) e. S ) |
| 10 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 11 | 1 10 | syl | |- ( ph -> M e. ZZ ) |
| 12 | fzp1ss | |- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 14 | 13 | sselda | |- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> x e. ( M ... N ) ) |
| 15 | 14 2 | syldan | |- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> ( F ` x ) e. S ) |
| 16 | 9 3 1 15 | seqcl2 | |- ( ph -> ( seq M ( .+ , F ) ` N ) e. S ) |