This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndcl.b | |- B = ( Base ` G ) |
|
| mndcl.p | |- .+ = ( +g ` G ) |
||
| mnd4g.1 | |- ( ph -> G e. Mnd ) |
||
| mnd4g.2 | |- ( ph -> X e. B ) |
||
| mnd4g.3 | |- ( ph -> Y e. B ) |
||
| mnd4g.4 | |- ( ph -> Z e. B ) |
||
| mnd4g.5 | |- ( ph -> W e. B ) |
||
| mnd4g.6 | |- ( ph -> ( Y .+ Z ) = ( Z .+ Y ) ) |
||
| Assertion | mnd4g | |- ( ph -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( ( X .+ Z ) .+ ( Y .+ W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndcl.b | |- B = ( Base ` G ) |
|
| 2 | mndcl.p | |- .+ = ( +g ` G ) |
|
| 3 | mnd4g.1 | |- ( ph -> G e. Mnd ) |
|
| 4 | mnd4g.2 | |- ( ph -> X e. B ) |
|
| 5 | mnd4g.3 | |- ( ph -> Y e. B ) |
|
| 6 | mnd4g.4 | |- ( ph -> Z e. B ) |
|
| 7 | mnd4g.5 | |- ( ph -> W e. B ) |
|
| 8 | mnd4g.6 | |- ( ph -> ( Y .+ Z ) = ( Z .+ Y ) ) |
|
| 9 | 1 2 3 5 6 7 8 | mnd12g | |- ( ph -> ( Y .+ ( Z .+ W ) ) = ( Z .+ ( Y .+ W ) ) ) |
| 10 | 9 | oveq2d | |- ( ph -> ( X .+ ( Y .+ ( Z .+ W ) ) ) = ( X .+ ( Z .+ ( Y .+ W ) ) ) ) |
| 11 | 1 2 | mndcl | |- ( ( G e. Mnd /\ Z e. B /\ W e. B ) -> ( Z .+ W ) e. B ) |
| 12 | 3 6 7 11 | syl3anc | |- ( ph -> ( Z .+ W ) e. B ) |
| 13 | 1 2 | mndass | |- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ ( Z .+ W ) e. B ) ) -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( X .+ ( Y .+ ( Z .+ W ) ) ) ) |
| 14 | 3 4 5 12 13 | syl13anc | |- ( ph -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( X .+ ( Y .+ ( Z .+ W ) ) ) ) |
| 15 | 1 2 | mndcl | |- ( ( G e. Mnd /\ Y e. B /\ W e. B ) -> ( Y .+ W ) e. B ) |
| 16 | 3 5 7 15 | syl3anc | |- ( ph -> ( Y .+ W ) e. B ) |
| 17 | 1 2 | mndass | |- ( ( G e. Mnd /\ ( X e. B /\ Z e. B /\ ( Y .+ W ) e. B ) ) -> ( ( X .+ Z ) .+ ( Y .+ W ) ) = ( X .+ ( Z .+ ( Y .+ W ) ) ) ) |
| 18 | 3 4 6 16 17 | syl13anc | |- ( ph -> ( ( X .+ Z ) .+ ( Y .+ W ) ) = ( X .+ ( Z .+ ( Y .+ W ) ) ) ) |
| 19 | 10 14 18 | 3eqtr4d | |- ( ph -> ( ( X .+ Y ) .+ ( Z .+ W ) ) = ( ( X .+ Z ) .+ ( Y .+ W ) ) ) |