This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofco.1 | |- ( ph -> F Fn A ) |
|
| ofco.2 | |- ( ph -> G Fn B ) |
||
| ofco.3 | |- ( ph -> H : D --> C ) |
||
| ofco.4 | |- ( ph -> A e. V ) |
||
| ofco.5 | |- ( ph -> B e. W ) |
||
| ofco.6 | |- ( ph -> D e. X ) |
||
| ofco.7 | |- ( A i^i B ) = C |
||
| Assertion | ofco | |- ( ph -> ( ( F oF R G ) o. H ) = ( ( F o. H ) oF R ( G o. H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofco.1 | |- ( ph -> F Fn A ) |
|
| 2 | ofco.2 | |- ( ph -> G Fn B ) |
|
| 3 | ofco.3 | |- ( ph -> H : D --> C ) |
|
| 4 | ofco.4 | |- ( ph -> A e. V ) |
|
| 5 | ofco.5 | |- ( ph -> B e. W ) |
|
| 6 | ofco.6 | |- ( ph -> D e. X ) |
|
| 7 | ofco.7 | |- ( A i^i B ) = C |
|
| 8 | 3 | ffvelcdmda | |- ( ( ph /\ x e. D ) -> ( H ` x ) e. C ) |
| 9 | 3 | feqmptd | |- ( ph -> H = ( x e. D |-> ( H ` x ) ) ) |
| 10 | eqidd | |- ( ( ph /\ y e. A ) -> ( F ` y ) = ( F ` y ) ) |
|
| 11 | eqidd | |- ( ( ph /\ y e. B ) -> ( G ` y ) = ( G ` y ) ) |
|
| 12 | 1 2 4 5 7 10 11 | offval | |- ( ph -> ( F oF R G ) = ( y e. C |-> ( ( F ` y ) R ( G ` y ) ) ) ) |
| 13 | fveq2 | |- ( y = ( H ` x ) -> ( F ` y ) = ( F ` ( H ` x ) ) ) |
|
| 14 | fveq2 | |- ( y = ( H ` x ) -> ( G ` y ) = ( G ` ( H ` x ) ) ) |
|
| 15 | 13 14 | oveq12d | |- ( y = ( H ` x ) -> ( ( F ` y ) R ( G ` y ) ) = ( ( F ` ( H ` x ) ) R ( G ` ( H ` x ) ) ) ) |
| 16 | 8 9 12 15 | fmptco | |- ( ph -> ( ( F oF R G ) o. H ) = ( x e. D |-> ( ( F ` ( H ` x ) ) R ( G ` ( H ` x ) ) ) ) ) |
| 17 | inss1 | |- ( A i^i B ) C_ A |
|
| 18 | 7 17 | eqsstrri | |- C C_ A |
| 19 | fss | |- ( ( H : D --> C /\ C C_ A ) -> H : D --> A ) |
|
| 20 | 3 18 19 | sylancl | |- ( ph -> H : D --> A ) |
| 21 | fnfco | |- ( ( F Fn A /\ H : D --> A ) -> ( F o. H ) Fn D ) |
|
| 22 | 1 20 21 | syl2anc | |- ( ph -> ( F o. H ) Fn D ) |
| 23 | inss2 | |- ( A i^i B ) C_ B |
|
| 24 | 7 23 | eqsstrri | |- C C_ B |
| 25 | fss | |- ( ( H : D --> C /\ C C_ B ) -> H : D --> B ) |
|
| 26 | 3 24 25 | sylancl | |- ( ph -> H : D --> B ) |
| 27 | fnfco | |- ( ( G Fn B /\ H : D --> B ) -> ( G o. H ) Fn D ) |
|
| 28 | 2 26 27 | syl2anc | |- ( ph -> ( G o. H ) Fn D ) |
| 29 | inidm | |- ( D i^i D ) = D |
|
| 30 | 3 | ffnd | |- ( ph -> H Fn D ) |
| 31 | fvco2 | |- ( ( H Fn D /\ x e. D ) -> ( ( F o. H ) ` x ) = ( F ` ( H ` x ) ) ) |
|
| 32 | 30 31 | sylan | |- ( ( ph /\ x e. D ) -> ( ( F o. H ) ` x ) = ( F ` ( H ` x ) ) ) |
| 33 | fvco2 | |- ( ( H Fn D /\ x e. D ) -> ( ( G o. H ) ` x ) = ( G ` ( H ` x ) ) ) |
|
| 34 | 30 33 | sylan | |- ( ( ph /\ x e. D ) -> ( ( G o. H ) ` x ) = ( G ` ( H ` x ) ) ) |
| 35 | 22 28 6 6 29 32 34 | offval | |- ( ph -> ( ( F o. H ) oF R ( G o. H ) ) = ( x e. D |-> ( ( F ` ( H ` x ) ) R ( G ` ( H ` x ) ) ) ) ) |
| 36 | 16 35 | eqtr4d | |- ( ph -> ( ( F oF R G ) o. H ) = ( ( F o. H ) oF R ( G o. H ) ) ) |