This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovclg.1 | |- ( ( ph /\ ( x e. C /\ y e. D ) ) -> ( x F y ) e. E ) |
|
| Assertion | caovclg | |- ( ( ph /\ ( A e. C /\ B e. D ) ) -> ( A F B ) e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovclg.1 | |- ( ( ph /\ ( x e. C /\ y e. D ) ) -> ( x F y ) e. E ) |
|
| 2 | 1 | ralrimivva | |- ( ph -> A. x e. C A. y e. D ( x F y ) e. E ) |
| 3 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 4 | 3 | eleq1d | |- ( x = A -> ( ( x F y ) e. E <-> ( A F y ) e. E ) ) |
| 5 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 6 | 5 | eleq1d | |- ( y = B -> ( ( A F y ) e. E <-> ( A F B ) e. E ) ) |
| 7 | 4 6 | rspc2v | |- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ( x F y ) e. E -> ( A F B ) e. E ) ) |
| 8 | 2 7 | mpan9 | |- ( ( ph /\ ( A e. C /\ B e. D ) ) -> ( A F B ) e. E ) |