This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzp1nel | |- -. ( N + 1 ) e. ( M ... N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 2 | ltp1 | |- ( N e. RR -> N < ( N + 1 ) ) |
|
| 3 | id | |- ( N e. RR -> N e. RR ) |
|
| 4 | peano2re | |- ( N e. RR -> ( N + 1 ) e. RR ) |
|
| 5 | 3 4 | ltnled | |- ( N e. RR -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
| 6 | 2 5 | mpbid | |- ( N e. RR -> -. ( N + 1 ) <_ N ) |
| 7 | 1 6 | syl | |- ( N e. ZZ -> -. ( N + 1 ) <_ N ) |
| 8 | 7 | intnand | |- ( N e. ZZ -> -. ( M <_ ( N + 1 ) /\ ( N + 1 ) <_ N ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ ( N + 1 ) e. ZZ ) -> -. ( M <_ ( N + 1 ) /\ ( N + 1 ) <_ N ) ) |
| 10 | elfz2 | |- ( ( N + 1 ) e. ( M ... N ) <-> ( ( M e. ZZ /\ N e. ZZ /\ ( N + 1 ) e. ZZ ) /\ ( M <_ ( N + 1 ) /\ ( N + 1 ) <_ N ) ) ) |
|
| 11 | 10 | notbii | |- ( -. ( N + 1 ) e. ( M ... N ) <-> -. ( ( M e. ZZ /\ N e. ZZ /\ ( N + 1 ) e. ZZ ) /\ ( M <_ ( N + 1 ) /\ ( N + 1 ) <_ N ) ) ) |
| 12 | imnan | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( N + 1 ) e. ZZ ) -> -. ( M <_ ( N + 1 ) /\ ( N + 1 ) <_ N ) ) <-> -. ( ( M e. ZZ /\ N e. ZZ /\ ( N + 1 ) e. ZZ ) /\ ( M <_ ( N + 1 ) /\ ( N + 1 ) <_ N ) ) ) |
|
| 13 | 11 12 | bitr4i | |- ( -. ( N + 1 ) e. ( M ... N ) <-> ( ( M e. ZZ /\ N e. ZZ /\ ( N + 1 ) e. ZZ ) -> -. ( M <_ ( N + 1 ) /\ ( N + 1 ) <_ N ) ) ) |
| 14 | 9 13 | mpbir | |- -. ( N + 1 ) e. ( M ... N ) |