This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a union is the union of domains. Exercise 56(a) of Enderton p. 65. (Contributed by NM, 12-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmun | |- dom ( A u. B ) = ( dom A u. dom B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( y = z -> ( y A x <-> z A x ) ) |
|
| 2 | 1 | exbidv | |- ( y = z -> ( E. x y A x <-> E. x z A x ) ) |
| 3 | breq1 | |- ( y = z -> ( y B x <-> z B x ) ) |
|
| 4 | 3 | exbidv | |- ( y = z -> ( E. x y B x <-> E. x z B x ) ) |
| 5 | 2 4 | unabw | |- ( { y | E. x y A x } u. { y | E. x y B x } ) = { z | ( E. x z A x \/ E. x z B x ) } |
| 6 | brun | |- ( z ( A u. B ) x <-> ( z A x \/ z B x ) ) |
|
| 7 | 6 | exbii | |- ( E. x z ( A u. B ) x <-> E. x ( z A x \/ z B x ) ) |
| 8 | 19.43 | |- ( E. x ( z A x \/ z B x ) <-> ( E. x z A x \/ E. x z B x ) ) |
|
| 9 | 7 8 | bitr2i | |- ( ( E. x z A x \/ E. x z B x ) <-> E. x z ( A u. B ) x ) |
| 10 | 9 | abbii | |- { z | ( E. x z A x \/ E. x z B x ) } = { z | E. x z ( A u. B ) x } |
| 11 | 5 10 | eqtri | |- ( { y | E. x y A x } u. { y | E. x y B x } ) = { z | E. x z ( A u. B ) x } |
| 12 | df-dm | |- dom A = { y | E. x y A x } |
|
| 13 | df-dm | |- dom B = { y | E. x y B x } |
|
| 14 | 12 13 | uneq12i | |- ( dom A u. dom B ) = ( { y | E. x y A x } u. { y | E. x y B x } ) |
| 15 | df-dm | |- dom ( A u. B ) = { z | E. x z ( A u. B ) x } |
|
| 16 | 11 14 15 | 3eqtr4ri | |- dom ( A u. B ) = ( dom A u. dom B ) |