This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | |- B = ( Base ` G ) |
|
| gsumval3.0 | |- .0. = ( 0g ` G ) |
||
| gsumval3.p | |- .+ = ( +g ` G ) |
||
| gsumval3.z | |- Z = ( Cntz ` G ) |
||
| gsumval3.g | |- ( ph -> G e. Mnd ) |
||
| gsumval3.a | |- ( ph -> A e. V ) |
||
| gsumval3.f | |- ( ph -> F : A --> B ) |
||
| gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumval3.m | |- ( ph -> M e. NN ) |
||
| gsumval3.h | |- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
||
| gsumval3.n | |- ( ph -> ( F supp .0. ) C_ ran H ) |
||
| gsumval3.w | |- W = ( ( F o. H ) supp .0. ) |
||
| Assertion | gsumval3 | |- ( ph -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | |- B = ( Base ` G ) |
|
| 2 | gsumval3.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumval3.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumval3.z | |- Z = ( Cntz ` G ) |
|
| 5 | gsumval3.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumval3.a | |- ( ph -> A e. V ) |
|
| 7 | gsumval3.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumval3.m | |- ( ph -> M e. NN ) |
|
| 10 | gsumval3.h | |- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
|
| 11 | gsumval3.n | |- ( ph -> ( F supp .0. ) C_ ran H ) |
|
| 12 | gsumval3.w | |- W = ( ( F o. H ) supp .0. ) |
|
| 13 | 2 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 14 | 5 6 13 | syl2anc | |- ( ph -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 15 | 14 | adantr | |- ( ( ph /\ W = (/) ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 16 | 7 | feqmptd | |- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ W = (/) ) -> F = ( x e. A |-> ( F ` x ) ) ) |
| 18 | f1f | |- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) |
|
| 19 | 10 18 | syl | |- ( ph -> H : ( 1 ... M ) --> A ) |
| 20 | 19 | ad2antrr | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> H : ( 1 ... M ) --> A ) |
| 21 | f1f1orn | |- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
|
| 22 | 10 21 | syl | |- ( ph -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 23 | 22 | adantr | |- ( ( ph /\ W = (/) ) -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 24 | f1ocnv | |- ( H : ( 1 ... M ) -1-1-onto-> ran H -> `' H : ran H -1-1-onto-> ( 1 ... M ) ) |
|
| 25 | f1of | |- ( `' H : ran H -1-1-onto-> ( 1 ... M ) -> `' H : ran H --> ( 1 ... M ) ) |
|
| 26 | 23 24 25 | 3syl | |- ( ( ph /\ W = (/) ) -> `' H : ran H --> ( 1 ... M ) ) |
| 27 | 26 | ffvelcdmda | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( `' H ` x ) e. ( 1 ... M ) ) |
| 28 | fvco3 | |- ( ( H : ( 1 ... M ) --> A /\ ( `' H ` x ) e. ( 1 ... M ) ) -> ( ( F o. H ) ` ( `' H ` x ) ) = ( F ` ( H ` ( `' H ` x ) ) ) ) |
|
| 29 | 20 27 28 | syl2anc | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( F o. H ) ` ( `' H ` x ) ) = ( F ` ( H ` ( `' H ` x ) ) ) ) |
| 30 | simpr | |- ( ( ph /\ W = (/) ) -> W = (/) ) |
|
| 31 | 30 | difeq2d | |- ( ( ph /\ W = (/) ) -> ( ( 1 ... M ) \ W ) = ( ( 1 ... M ) \ (/) ) ) |
| 32 | dif0 | |- ( ( 1 ... M ) \ (/) ) = ( 1 ... M ) |
|
| 33 | 31 32 | eqtrdi | |- ( ( ph /\ W = (/) ) -> ( ( 1 ... M ) \ W ) = ( 1 ... M ) ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( 1 ... M ) \ W ) = ( 1 ... M ) ) |
| 35 | 27 34 | eleqtrrd | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( `' H ` x ) e. ( ( 1 ... M ) \ W ) ) |
| 36 | fco | |- ( ( F : A --> B /\ H : ( 1 ... M ) --> A ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
|
| 37 | 7 19 36 | syl2anc | |- ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 38 | 37 | adantr | |- ( ( ph /\ W = (/) ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 39 | 12 | eqimss2i | |- ( ( F o. H ) supp .0. ) C_ W |
| 40 | 39 | a1i | |- ( ( ph /\ W = (/) ) -> ( ( F o. H ) supp .0. ) C_ W ) |
| 41 | ovexd | |- ( ( ph /\ W = (/) ) -> ( 1 ... M ) e. _V ) |
|
| 42 | 2 | fvexi | |- .0. e. _V |
| 43 | 42 | a1i | |- ( ( ph /\ W = (/) ) -> .0. e. _V ) |
| 44 | 38 40 41 43 | suppssr | |- ( ( ( ph /\ W = (/) ) /\ ( `' H ` x ) e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` ( `' H ` x ) ) = .0. ) |
| 45 | 35 44 | syldan | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( F o. H ) ` ( `' H ` x ) ) = .0. ) |
| 46 | f1ocnvfv2 | |- ( ( H : ( 1 ... M ) -1-1-onto-> ran H /\ x e. ran H ) -> ( H ` ( `' H ` x ) ) = x ) |
|
| 47 | 23 46 | sylan | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( H ` ( `' H ` x ) ) = x ) |
| 48 | 47 | fveq2d | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` ( H ` ( `' H ` x ) ) ) = ( F ` x ) ) |
| 49 | 29 45 48 | 3eqtr3rd | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` x ) = .0. ) |
| 50 | fvex | |- ( F ` x ) e. _V |
|
| 51 | 50 | elsn | |- ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) |
| 52 | 49 51 | sylibr | |- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` x ) e. { .0. } ) |
| 53 | 52 | adantlr | |- ( ( ( ( ph /\ W = (/) ) /\ x e. A ) /\ x e. ran H ) -> ( F ` x ) e. { .0. } ) |
| 54 | eldif | |- ( x e. ( A \ ran H ) <-> ( x e. A /\ -. x e. ran H ) ) |
|
| 55 | 42 | a1i | |- ( ph -> .0. e. _V ) |
| 56 | 7 11 6 55 | suppssr | |- ( ( ph /\ x e. ( A \ ran H ) ) -> ( F ` x ) = .0. ) |
| 57 | 56 51 | sylibr | |- ( ( ph /\ x e. ( A \ ran H ) ) -> ( F ` x ) e. { .0. } ) |
| 58 | 54 57 | sylan2br | |- ( ( ph /\ ( x e. A /\ -. x e. ran H ) ) -> ( F ` x ) e. { .0. } ) |
| 59 | 58 | adantlr | |- ( ( ( ph /\ W = (/) ) /\ ( x e. A /\ -. x e. ran H ) ) -> ( F ` x ) e. { .0. } ) |
| 60 | 59 | anassrs | |- ( ( ( ( ph /\ W = (/) ) /\ x e. A ) /\ -. x e. ran H ) -> ( F ` x ) e. { .0. } ) |
| 61 | 53 60 | pm2.61dan | |- ( ( ( ph /\ W = (/) ) /\ x e. A ) -> ( F ` x ) e. { .0. } ) |
| 62 | 61 51 | sylib | |- ( ( ( ph /\ W = (/) ) /\ x e. A ) -> ( F ` x ) = .0. ) |
| 63 | 62 | mpteq2dva | |- ( ( ph /\ W = (/) ) -> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> .0. ) ) |
| 64 | 17 63 | eqtrd | |- ( ( ph /\ W = (/) ) -> F = ( x e. A |-> .0. ) ) |
| 65 | 64 | oveq2d | |- ( ( ph /\ W = (/) ) -> ( G gsum F ) = ( G gsum ( x e. A |-> .0. ) ) ) |
| 66 | 1 2 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 67 | 1 3 2 | mndlid | |- ( ( G e. Mnd /\ .0. e. B ) -> ( .0. .+ .0. ) = .0. ) |
| 68 | 5 66 67 | syl2anc2 | |- ( ph -> ( .0. .+ .0. ) = .0. ) |
| 69 | 68 | adantr | |- ( ( ph /\ W = (/) ) -> ( .0. .+ .0. ) = .0. ) |
| 70 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 71 | 9 70 | eleqtrdi | |- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 72 | 71 | adantr | |- ( ( ph /\ W = (/) ) -> M e. ( ZZ>= ` 1 ) ) |
| 73 | 33 | eleq2d | |- ( ( ph /\ W = (/) ) -> ( x e. ( ( 1 ... M ) \ W ) <-> x e. ( 1 ... M ) ) ) |
| 74 | 73 | biimpar | |- ( ( ( ph /\ W = (/) ) /\ x e. ( 1 ... M ) ) -> x e. ( ( 1 ... M ) \ W ) ) |
| 75 | 38 40 41 43 | suppssr | |- ( ( ( ph /\ W = (/) ) /\ x e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` x ) = .0. ) |
| 76 | 74 75 | syldan | |- ( ( ( ph /\ W = (/) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. H ) ` x ) = .0. ) |
| 77 | 69 72 76 | seqid3 | |- ( ( ph /\ W = (/) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = .0. ) |
| 78 | 15 65 77 | 3eqtr4d | |- ( ( ph /\ W = (/) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 79 | fzf | |- ... : ( ZZ X. ZZ ) --> ~P ZZ |
|
| 80 | ffn | |- ( ... : ( ZZ X. ZZ ) --> ~P ZZ -> ... Fn ( ZZ X. ZZ ) ) |
|
| 81 | ovelrn | |- ( ... Fn ( ZZ X. ZZ ) -> ( A e. ran ... <-> E. m e. ZZ E. n e. ZZ A = ( m ... n ) ) ) |
|
| 82 | 79 80 81 | mp2b | |- ( A e. ran ... <-> E. m e. ZZ E. n e. ZZ A = ( m ... n ) ) |
| 83 | 5 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> G e. Mnd ) |
| 84 | simpr | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> A = ( m ... n ) ) |
|
| 85 | frel | |- ( F : A --> B -> Rel F ) |
|
| 86 | reldm0 | |- ( Rel F -> ( F = (/) <-> dom F = (/) ) ) |
|
| 87 | 7 85 86 | 3syl | |- ( ph -> ( F = (/) <-> dom F = (/) ) ) |
| 88 | 7 | fdmd | |- ( ph -> dom F = A ) |
| 89 | 88 | eqeq1d | |- ( ph -> ( dom F = (/) <-> A = (/) ) ) |
| 90 | 87 89 | bitrd | |- ( ph -> ( F = (/) <-> A = (/) ) ) |
| 91 | coeq1 | |- ( F = (/) -> ( F o. H ) = ( (/) o. H ) ) |
|
| 92 | co01 | |- ( (/) o. H ) = (/) |
|
| 93 | 91 92 | eqtrdi | |- ( F = (/) -> ( F o. H ) = (/) ) |
| 94 | 93 | oveq1d | |- ( F = (/) -> ( ( F o. H ) supp .0. ) = ( (/) supp .0. ) ) |
| 95 | supp0 | |- ( .0. e. _V -> ( (/) supp .0. ) = (/) ) |
|
| 96 | 42 95 | ax-mp | |- ( (/) supp .0. ) = (/) |
| 97 | 94 96 | eqtrdi | |- ( F = (/) -> ( ( F o. H ) supp .0. ) = (/) ) |
| 98 | 12 97 | eqtrid | |- ( F = (/) -> W = (/) ) |
| 99 | 90 98 | biimtrrdi | |- ( ph -> ( A = (/) -> W = (/) ) ) |
| 100 | 99 | necon3d | |- ( ph -> ( W =/= (/) -> A =/= (/) ) ) |
| 101 | 100 | imp | |- ( ( ph /\ W =/= (/) ) -> A =/= (/) ) |
| 102 | 101 | adantr | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> A =/= (/) ) |
| 103 | 84 102 | eqnetrrd | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( m ... n ) =/= (/) ) |
| 104 | fzn0 | |- ( ( m ... n ) =/= (/) <-> n e. ( ZZ>= ` m ) ) |
|
| 105 | 103 104 | sylib | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> n e. ( ZZ>= ` m ) ) |
| 106 | 7 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> F : A --> B ) |
| 107 | 84 | feq2d | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( F : A --> B <-> F : ( m ... n ) --> B ) ) |
| 108 | 106 107 | mpbid | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> F : ( m ... n ) --> B ) |
| 109 | 1 3 83 105 108 | gsumval2 | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( G gsum F ) = ( seq m ( .+ , F ) ` n ) ) |
| 110 | frn | |- ( H : ( 1 ... M ) --> A -> ran H C_ A ) |
|
| 111 | 10 18 110 | 3syl | |- ( ph -> ran H C_ A ) |
| 112 | 111 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ A ) |
| 113 | 112 84 | sseqtrd | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ ( m ... n ) ) |
| 114 | fzssuz | |- ( m ... n ) C_ ( ZZ>= ` m ) |
|
| 115 | uzssz | |- ( ZZ>= ` m ) C_ ZZ |
|
| 116 | zssre | |- ZZ C_ RR |
|
| 117 | 115 116 | sstri | |- ( ZZ>= ` m ) C_ RR |
| 118 | 114 117 | sstri | |- ( m ... n ) C_ RR |
| 119 | 113 118 | sstrdi | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ RR ) |
| 120 | ltso | |- < Or RR |
|
| 121 | soss | |- ( ran H C_ RR -> ( < Or RR -> < Or ran H ) ) |
|
| 122 | 119 120 121 | mpisyl | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> < Or ran H ) |
| 123 | fzfi | |- ( 1 ... M ) e. Fin |
|
| 124 | 123 | a1i | |- ( ph -> ( 1 ... M ) e. Fin ) |
| 125 | 19 124 | fexd | |- ( ph -> H e. _V ) |
| 126 | f1oen3g | |- ( ( H e. _V /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( 1 ... M ) ~~ ran H ) |
|
| 127 | 125 22 126 | syl2anc | |- ( ph -> ( 1 ... M ) ~~ ran H ) |
| 128 | enfi | |- ( ( 1 ... M ) ~~ ran H -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
|
| 129 | 127 128 | syl | |- ( ph -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
| 130 | 123 129 | mpbii | |- ( ph -> ran H e. Fin ) |
| 131 | 130 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H e. Fin ) |
| 132 | fz1iso | |- ( ( < Or ran H /\ ran H e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
|
| 133 | 122 131 132 | syl2anc | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
| 134 | 9 | nnnn0d | |- ( ph -> M e. NN0 ) |
| 135 | hashfz1 | |- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
|
| 136 | 134 135 | syl | |- ( ph -> ( # ` ( 1 ... M ) ) = M ) |
| 137 | 124 22 | hasheqf1od | |- ( ph -> ( # ` ( 1 ... M ) ) = ( # ` ran H ) ) |
| 138 | 136 137 | eqtr3d | |- ( ph -> M = ( # ` ran H ) ) |
| 139 | 138 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> M = ( # ` ran H ) ) |
| 140 | 139 | fveq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. f ) ) ` M ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ran H ) ) ) |
| 141 | 5 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> G e. Mnd ) |
| 142 | 1 3 | mndcl | |- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 143 | 142 | 3expb | |- ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 144 | 141 143 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 145 | 8 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 146 | 145 | sselda | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ran F ) -> x e. ( Z ` ran F ) ) |
| 147 | 3 4 | cntzi | |- ( ( x e. ( Z ` ran F ) /\ y e. ran F ) -> ( x .+ y ) = ( y .+ x ) ) |
| 148 | 146 147 | sylan | |- ( ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ran F ) /\ y e. ran F ) -> ( x .+ y ) = ( y .+ x ) ) |
| 149 | 148 | anasss | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. ran F /\ y e. ran F ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 150 | 1 3 | mndass | |- ( ( G e. Mnd /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 151 | 141 150 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 152 | 71 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> M e. ( ZZ>= ` 1 ) ) |
| 153 | 7 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> F : A --> B ) |
| 154 | 153 | frnd | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran F C_ B ) |
| 155 | simprr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
|
| 156 | isof1o | |- ( f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) |
|
| 157 | 155 156 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) |
| 158 | 139 | oveq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( 1 ... M ) = ( 1 ... ( # ` ran H ) ) ) |
| 159 | 158 | f1oeq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( f : ( 1 ... M ) -1-1-onto-> ran H <-> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) ) |
| 160 | 157 159 | mpbird | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) -1-1-onto-> ran H ) |
| 161 | f1ocnv | |- ( f : ( 1 ... M ) -1-1-onto-> ran H -> `' f : ran H -1-1-onto-> ( 1 ... M ) ) |
|
| 162 | 160 161 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> `' f : ran H -1-1-onto-> ( 1 ... M ) ) |
| 163 | 22 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 164 | f1oco | |- ( ( `' f : ran H -1-1-onto-> ( 1 ... M ) /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( `' f o. H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
|
| 165 | 162 163 164 | syl2anc | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( `' f o. H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 166 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 167 | dffn4 | |- ( F Fn A <-> F : A -onto-> ran F ) |
|
| 168 | 166 167 | sylib | |- ( F : A --> B -> F : A -onto-> ran F ) |
| 169 | fof | |- ( F : A -onto-> ran F -> F : A --> ran F ) |
|
| 170 | 153 168 169 | 3syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> F : A --> ran F ) |
| 171 | f1of | |- ( f : ( 1 ... M ) -1-1-onto-> ran H -> f : ( 1 ... M ) --> ran H ) |
|
| 172 | 160 171 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) --> ran H ) |
| 173 | 111 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H C_ A ) |
| 174 | 172 173 | fssd | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) --> A ) |
| 175 | fco | |- ( ( F : A --> ran F /\ f : ( 1 ... M ) --> A ) -> ( F o. f ) : ( 1 ... M ) --> ran F ) |
|
| 176 | 170 174 175 | syl2anc | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. f ) : ( 1 ... M ) --> ran F ) |
| 177 | 176 | ffvelcdmda | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. f ) ` x ) e. ran F ) |
| 178 | f1ococnv2 | |- ( f : ( 1 ... M ) -1-1-onto-> ran H -> ( f o. `' f ) = ( _I |` ran H ) ) |
|
| 179 | 160 178 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( f o. `' f ) = ( _I |` ran H ) ) |
| 180 | 179 | coeq1d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( f o. `' f ) o. H ) = ( ( _I |` ran H ) o. H ) ) |
| 181 | f1of | |- ( H : ( 1 ... M ) -1-1-onto-> ran H -> H : ( 1 ... M ) --> ran H ) |
|
| 182 | fcoi2 | |- ( H : ( 1 ... M ) --> ran H -> ( ( _I |` ran H ) o. H ) = H ) |
|
| 183 | 163 181 182 | 3syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( _I |` ran H ) o. H ) = H ) |
| 184 | 180 183 | eqtr2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H = ( ( f o. `' f ) o. H ) ) |
| 185 | coass | |- ( ( f o. `' f ) o. H ) = ( f o. ( `' f o. H ) ) |
|
| 186 | 184 185 | eqtrdi | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H = ( f o. ( `' f o. H ) ) ) |
| 187 | 186 | coeq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. H ) = ( F o. ( f o. ( `' f o. H ) ) ) ) |
| 188 | coass | |- ( ( F o. f ) o. ( `' f o. H ) ) = ( F o. ( f o. ( `' f o. H ) ) ) |
|
| 189 | 187 188 | eqtr4di | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. H ) = ( ( F o. f ) o. ( `' f o. H ) ) ) |
| 190 | 189 | fveq1d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( F o. H ) ` k ) = ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) ) |
| 191 | 190 | adantr | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( F o. H ) ` k ) = ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) ) |
| 192 | f1of | |- ( `' f : ran H -1-1-onto-> ( 1 ... M ) -> `' f : ran H --> ( 1 ... M ) ) |
|
| 193 | 160 161 192 | 3syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> `' f : ran H --> ( 1 ... M ) ) |
| 194 | 163 181 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H : ( 1 ... M ) --> ran H ) |
| 195 | fco | |- ( ( `' f : ran H --> ( 1 ... M ) /\ H : ( 1 ... M ) --> ran H ) -> ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) ) |
|
| 196 | 193 194 195 | syl2anc | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) ) |
| 197 | fvco3 | |- ( ( ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) /\ k e. ( 1 ... M ) ) -> ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
|
| 198 | 196 197 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
| 199 | 191 198 | eqtrd | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( F o. H ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
| 200 | 144 149 151 152 154 165 177 199 | seqf1o | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq 1 ( .+ , ( F o. f ) ) ` M ) ) |
| 201 | 1 3 2 | mndlid | |- ( ( G e. Mnd /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 202 | 141 201 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 203 | 1 3 2 | mndrid | |- ( ( G e. Mnd /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 204 | 141 203 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 205 | 141 66 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> .0. e. B ) |
| 206 | fdm | |- ( H : ( 1 ... M ) --> A -> dom H = ( 1 ... M ) ) |
|
| 207 | 10 18 206 | 3syl | |- ( ph -> dom H = ( 1 ... M ) ) |
| 208 | eluzfz1 | |- ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) |
|
| 209 | ne0i | |- ( 1 e. ( 1 ... M ) -> ( 1 ... M ) =/= (/) ) |
|
| 210 | 71 208 209 | 3syl | |- ( ph -> ( 1 ... M ) =/= (/) ) |
| 211 | 207 210 | eqnetrd | |- ( ph -> dom H =/= (/) ) |
| 212 | dm0rn0 | |- ( dom H = (/) <-> ran H = (/) ) |
|
| 213 | 212 | necon3bii | |- ( dom H =/= (/) <-> ran H =/= (/) ) |
| 214 | 211 213 | sylib | |- ( ph -> ran H =/= (/) ) |
| 215 | 214 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H =/= (/) ) |
| 216 | 113 | adantrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H C_ ( m ... n ) ) |
| 217 | simprl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> A = ( m ... n ) ) |
|
| 218 | 217 | eleq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( x e. A <-> x e. ( m ... n ) ) ) |
| 219 | 218 | biimpar | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( m ... n ) ) -> x e. A ) |
| 220 | 153 | ffvelcdmda | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. A ) -> ( F ` x ) e. B ) |
| 221 | 219 220 | syldan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( m ... n ) ) -> ( F ` x ) e. B ) |
| 222 | 217 | difeq1d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( A \ ran H ) = ( ( m ... n ) \ ran H ) ) |
| 223 | 222 | eleq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( x e. ( A \ ran H ) <-> x e. ( ( m ... n ) \ ran H ) ) ) |
| 224 | 223 | biimpar | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( ( m ... n ) \ ran H ) ) -> x e. ( A \ ran H ) ) |
| 225 | 56 | ad4ant14 | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( A \ ran H ) ) -> ( F ` x ) = .0. ) |
| 226 | 224 225 | syldan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( ( m ... n ) \ ran H ) ) -> ( F ` x ) = .0. ) |
| 227 | f1of | |- ( f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H -> f : ( 1 ... ( # ` ran H ) ) --> ran H ) |
|
| 228 | 155 156 227 | 3syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... ( # ` ran H ) ) --> ran H ) |
| 229 | fvco3 | |- ( ( f : ( 1 ... ( # ` ran H ) ) --> ran H /\ y e. ( 1 ... ( # ` ran H ) ) ) -> ( ( F o. f ) ` y ) = ( F ` ( f ` y ) ) ) |
|
| 230 | 228 229 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ y e. ( 1 ... ( # ` ran H ) ) ) -> ( ( F o. f ) ` y ) = ( F ` ( f ` y ) ) ) |
| 231 | 202 204 144 205 155 215 216 221 226 230 | seqcoll2 | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq m ( .+ , F ) ` n ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ran H ) ) ) |
| 232 | 140 200 231 | 3eqtr4d | |- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) |
| 233 | 232 | expr | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) ) |
| 234 | 233 | exlimdv | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) ) |
| 235 | 133 234 | mpd | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) |
| 236 | 109 235 | eqtr4d | |- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 237 | 236 | ex | |- ( ( ph /\ W =/= (/) ) -> ( A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 238 | 237 | rexlimdvw | |- ( ( ph /\ W =/= (/) ) -> ( E. n e. ZZ A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 239 | 238 | rexlimdvw | |- ( ( ph /\ W =/= (/) ) -> ( E. m e. ZZ E. n e. ZZ A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 240 | 82 239 | biimtrid | |- ( ( ph /\ W =/= (/) ) -> ( A e. ran ... -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 241 | suppssdm | |- ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) |
|
| 242 | 12 241 | eqsstri | |- W C_ dom ( F o. H ) |
| 243 | 242 37 | fssdm | |- ( ph -> W C_ ( 1 ... M ) ) |
| 244 | fz1ssnn | |- ( 1 ... M ) C_ NN |
|
| 245 | nnssre | |- NN C_ RR |
|
| 246 | 244 245 | sstri | |- ( 1 ... M ) C_ RR |
| 247 | 243 246 | sstrdi | |- ( ph -> W C_ RR ) |
| 248 | soss | |- ( W C_ RR -> ( < Or RR -> < Or W ) ) |
|
| 249 | 247 120 248 | mpisyl | |- ( ph -> < Or W ) |
| 250 | ssfi | |- ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) |
|
| 251 | 123 243 250 | sylancr | |- ( ph -> W e. Fin ) |
| 252 | fz1iso | |- ( ( < Or W /\ W e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
|
| 253 | 249 251 252 | syl2anc | |- ( ph -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
| 254 | 253 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
| 255 | 1 2 3 4 5 6 7 8 9 10 11 12 | gsumval3lem2 | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |
| 256 | 5 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> G e. Mnd ) |
| 257 | 256 201 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 258 | 256 203 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 259 | 256 143 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 260 | 256 66 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> .0. e. B ) |
| 261 | simprr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
|
| 262 | simplr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W =/= (/) ) |
|
| 263 | 243 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) |
| 264 | 37 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 265 | 264 | ffvelcdmda | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. H ) ` x ) e. B ) |
| 266 | 39 | a1i | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( F o. H ) supp .0. ) C_ W ) |
| 267 | ovexd | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( 1 ... M ) e. _V ) |
|
| 268 | 42 | a1i | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> .0. e. _V ) |
| 269 | 264 266 267 268 | suppssr | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` x ) = .0. ) |
| 270 | coass | |- ( ( F o. H ) o. f ) = ( F o. ( H o. f ) ) |
|
| 271 | 270 | fveq1i | |- ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. ( H o. f ) ) ` y ) |
| 272 | isof1o | |- ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
|
| 273 | f1of | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) --> W ) |
|
| 274 | 261 272 273 | 3syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f : ( 1 ... ( # ` W ) ) --> W ) |
| 275 | fvco3 | |- ( ( f : ( 1 ... ( # ` W ) ) --> W /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
|
| 276 | 274 275 | sylan | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
| 277 | 271 276 | eqtr3id | |- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. ( H o. f ) ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
| 278 | 257 258 259 260 261 262 263 265 269 277 | seqcoll2 | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |
| 279 | 255 278 | eqtr4d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 280 | 279 | expr | |- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 281 | 280 | exlimdv | |- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 282 | 254 281 | mpd | |- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 283 | 282 | ex | |- ( ( ph /\ W =/= (/) ) -> ( -. A e. ran ... -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 284 | 240 283 | pm2.61d | |- ( ( ph /\ W =/= (/) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 285 | 78 284 | pm2.61dane | |- ( ph -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |