This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqcaopr2 . (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcaopr3.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqcaopr3.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x Q y ) e. S ) |
||
| seqcaopr3.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqcaopr3.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
||
| seqcaopr3.5 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. S ) |
||
| seqcaopr3.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) ) |
||
| seqcaopr3.7 | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) Q ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
||
| Assertion | seqcaopr3 | |- ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr3.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqcaopr3.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x Q y ) e. S ) |
|
| 3 | seqcaopr3.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | seqcaopr3.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
|
| 5 | seqcaopr3.5 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) e. S ) |
|
| 6 | seqcaopr3.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) ) |
|
| 7 | seqcaopr3.7 | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) Q ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
|
| 8 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 9 | 3 8 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 10 | fveq2 | |- ( z = M -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` M ) ) |
|
| 11 | fveq2 | |- ( z = M -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` M ) ) |
|
| 12 | fveq2 | |- ( z = M -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` M ) ) |
|
| 13 | 11 12 | oveq12d | |- ( z = M -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) |
| 14 | 10 13 | eqeq12d | |- ( z = M -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) ) |
| 15 | 14 | imbi2d | |- ( z = M -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) ) ) |
| 16 | fveq2 | |- ( z = n -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` n ) ) |
|
| 17 | fveq2 | |- ( z = n -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` n ) ) |
|
| 18 | fveq2 | |- ( z = n -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` n ) ) |
|
| 19 | 17 18 | oveq12d | |- ( z = n -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) |
| 20 | 16 19 | eqeq12d | |- ( z = n -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) ) |
| 21 | 20 | imbi2d | |- ( z = n -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) ) ) |
| 22 | fveq2 | |- ( z = ( n + 1 ) -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` ( n + 1 ) ) ) |
|
| 23 | fveq2 | |- ( z = ( n + 1 ) -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` ( n + 1 ) ) ) |
|
| 24 | fveq2 | |- ( z = ( n + 1 ) -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` ( n + 1 ) ) ) |
|
| 25 | 23 24 | oveq12d | |- ( z = ( n + 1 ) -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) |
| 26 | 22 25 | eqeq12d | |- ( z = ( n + 1 ) -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) |
| 27 | 26 | imbi2d | |- ( z = ( n + 1 ) -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
| 28 | fveq2 | |- ( z = N -> ( seq M ( .+ , H ) ` z ) = ( seq M ( .+ , H ) ` N ) ) |
|
| 29 | fveq2 | |- ( z = N -> ( seq M ( .+ , F ) ` z ) = ( seq M ( .+ , F ) ` N ) ) |
|
| 30 | fveq2 | |- ( z = N -> ( seq M ( .+ , G ) ` z ) = ( seq M ( .+ , G ) ` N ) ) |
|
| 31 | 29 30 | oveq12d | |- ( z = N -> ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) |
| 32 | 28 31 | eqeq12d | |- ( z = N -> ( ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) <-> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) ) |
| 33 | 32 | imbi2d | |- ( z = N -> ( ( ph -> ( seq M ( .+ , H ) ` z ) = ( ( seq M ( .+ , F ) ` z ) Q ( seq M ( .+ , G ) ` z ) ) ) <-> ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) ) ) |
| 34 | fveq2 | |- ( k = M -> ( H ` k ) = ( H ` M ) ) |
|
| 35 | fveq2 | |- ( k = M -> ( F ` k ) = ( F ` M ) ) |
|
| 36 | fveq2 | |- ( k = M -> ( G ` k ) = ( G ` M ) ) |
|
| 37 | 35 36 | oveq12d | |- ( k = M -> ( ( F ` k ) Q ( G ` k ) ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 38 | 34 37 | eqeq12d | |- ( k = M -> ( ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) <-> ( H ` M ) = ( ( F ` M ) Q ( G ` M ) ) ) ) |
| 39 | 6 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) ) |
| 40 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 41 | 3 40 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 42 | 38 39 41 | rspcdva | |- ( ph -> ( H ` M ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 43 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 44 | 3 43 | syl | |- ( ph -> M e. ZZ ) |
| 45 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , H ) ` M ) = ( H ` M ) ) |
|
| 46 | 44 45 | syl | |- ( ph -> ( seq M ( .+ , H ) ` M ) = ( H ` M ) ) |
| 47 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
|
| 48 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , G ) ` M ) = ( G ` M ) ) |
|
| 49 | 47 48 | oveq12d | |- ( M e. ZZ -> ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 50 | 44 49 | syl | |- ( ph -> ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) = ( ( F ` M ) Q ( G ` M ) ) ) |
| 51 | 42 46 50 | 3eqtr4d | |- ( ph -> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) |
| 52 | 51 | a1i | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( .+ , H ) ` M ) = ( ( seq M ( .+ , F ) ` M ) Q ( seq M ( .+ , G ) ` M ) ) ) ) |
| 53 | oveq1 | |- ( ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) -> ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) ) |
|
| 54 | elfzouz | |- ( n e. ( M ..^ N ) -> n e. ( ZZ>= ` M ) ) |
|
| 55 | 54 | adantl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> n e. ( ZZ>= ` M ) ) |
| 56 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) ) |
| 58 | fveq2 | |- ( k = ( n + 1 ) -> ( H ` k ) = ( H ` ( n + 1 ) ) ) |
|
| 59 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 60 | fveq2 | |- ( k = ( n + 1 ) -> ( G ` k ) = ( G ` ( n + 1 ) ) ) |
|
| 61 | 59 60 | oveq12d | |- ( k = ( n + 1 ) -> ( ( F ` k ) Q ( G ` k ) ) = ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 62 | 58 61 | eqeq12d | |- ( k = ( n + 1 ) -> ( ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) <-> ( H ` ( n + 1 ) ) = ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) ) |
| 63 | 39 | adantr | |- ( ( ph /\ n e. ( M ..^ N ) ) -> A. k e. ( M ... N ) ( H ` k ) = ( ( F ` k ) Q ( G ` k ) ) ) |
| 64 | fzofzp1 | |- ( n e. ( M ..^ N ) -> ( n + 1 ) e. ( M ... N ) ) |
|
| 65 | 64 | adantl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( n + 1 ) e. ( M ... N ) ) |
| 66 | 62 63 65 | rspcdva | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( H ` ( n + 1 ) ) = ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 67 | 66 | oveq2d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( ( F ` ( n + 1 ) ) Q ( G ` ( n + 1 ) ) ) ) ) |
| 68 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 69 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , G ) ` ( n + 1 ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) |
|
| 70 | 68 69 | oveq12d | |- ( n e. ( ZZ>= ` M ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) Q ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 71 | 55 70 | syl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) Q ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 72 | 7 67 71 | 3eqtr4rd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) ) |
| 73 | 57 72 | eqeq12d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) <-> ( ( seq M ( .+ , H ) ` n ) .+ ( H ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) .+ ( H ` ( n + 1 ) ) ) ) ) |
| 74 | 53 73 | imbitrrid | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) |
| 75 | 74 | expcom | |- ( n e. ( M ..^ N ) -> ( ph -> ( ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
| 76 | 75 | a2d | |- ( n e. ( M ..^ N ) -> ( ( ph -> ( seq M ( .+ , H ) ` n ) = ( ( seq M ( .+ , F ) ` n ) Q ( seq M ( .+ , G ) ` n ) ) ) -> ( ph -> ( seq M ( .+ , H ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` ( n + 1 ) ) Q ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) ) ) |
| 77 | 15 21 27 33 52 76 | fzind2 | |- ( N e. ( M ... N ) -> ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) ) |
| 78 | 9 77 | mpcom | |- ( ph -> ( seq M ( .+ , H ) ` N ) = ( ( seq M ( .+ , F ) ` N ) Q ( seq M ( .+ , G ) ` N ) ) ) |