This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a restriction. Exercise 14 of TakeutiZaring p. 25. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmres | |- dom ( A |` B ) = ( B i^i dom A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | eldm2 | |- ( x e. dom ( A |` B ) <-> E. y <. x , y >. e. ( A |` B ) ) |
| 3 | 19.42v | |- ( E. y ( x e. B /\ <. x , y >. e. A ) <-> ( x e. B /\ E. y <. x , y >. e. A ) ) |
|
| 4 | vex | |- y e. _V |
|
| 5 | 4 | opelresi | |- ( <. x , y >. e. ( A |` B ) <-> ( x e. B /\ <. x , y >. e. A ) ) |
| 6 | 5 | exbii | |- ( E. y <. x , y >. e. ( A |` B ) <-> E. y ( x e. B /\ <. x , y >. e. A ) ) |
| 7 | 1 | eldm2 | |- ( x e. dom A <-> E. y <. x , y >. e. A ) |
| 8 | 7 | anbi2i | |- ( ( x e. B /\ x e. dom A ) <-> ( x e. B /\ E. y <. x , y >. e. A ) ) |
| 9 | 3 6 8 | 3bitr4i | |- ( E. y <. x , y >. e. ( A |` B ) <-> ( x e. B /\ x e. dom A ) ) |
| 10 | 2 9 | bitr2i | |- ( ( x e. B /\ x e. dom A ) <-> x e. dom ( A |` B ) ) |
| 11 | 10 | ineqri | |- ( B i^i dom A ) = dom ( A |` B ) |
| 12 | 11 | eqcomi | |- dom ( A |` B ) = ( B i^i dom A ) |