This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssr.f | |- ( ph -> F : A --> B ) |
|
| suppssr.n | |- ( ph -> ( F supp Z ) C_ W ) |
||
| suppssr.a | |- ( ph -> A e. V ) |
||
| suppssr.z | |- ( ph -> Z e. U ) |
||
| Assertion | suppssr | |- ( ( ph /\ X e. ( A \ W ) ) -> ( F ` X ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssr.f | |- ( ph -> F : A --> B ) |
|
| 2 | suppssr.n | |- ( ph -> ( F supp Z ) C_ W ) |
|
| 3 | suppssr.a | |- ( ph -> A e. V ) |
|
| 4 | suppssr.z | |- ( ph -> Z e. U ) |
|
| 5 | eldif | |- ( X e. ( A \ W ) <-> ( X e. A /\ -. X e. W ) ) |
|
| 6 | fvex | |- ( F ` X ) e. _V |
|
| 7 | eldifsn | |- ( ( F ` X ) e. ( _V \ { Z } ) <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) |
|
| 8 | 6 7 | mpbiran | |- ( ( F ` X ) e. ( _V \ { Z } ) <-> ( F ` X ) =/= Z ) |
| 9 | 1 | ffnd | |- ( ph -> F Fn A ) |
| 10 | elsuppfn | |- ( ( F Fn A /\ A e. V /\ Z e. U ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
|
| 11 | 9 3 4 10 | syl3anc | |- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
| 12 | ibar | |- ( ( F ` X ) e. _V -> ( ( F ` X ) =/= Z <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) ) |
|
| 13 | 6 12 | mp1i | |- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z <-> ( ( F ` X ) e. _V /\ ( F ` X ) =/= Z ) ) ) |
| 14 | 13 7 | bitr4di | |- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z <-> ( F ` X ) e. ( _V \ { Z } ) ) ) |
| 15 | 14 | pm5.32da | |- ( ph -> ( ( X e. A /\ ( F ` X ) =/= Z ) <-> ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) ) ) |
| 16 | 11 15 | bitrd | |- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) ) ) |
| 17 | 2 | sseld | |- ( ph -> ( X e. ( F supp Z ) -> X e. W ) ) |
| 18 | 16 17 | sylbird | |- ( ph -> ( ( X e. A /\ ( F ` X ) e. ( _V \ { Z } ) ) -> X e. W ) ) |
| 19 | 18 | expdimp | |- ( ( ph /\ X e. A ) -> ( ( F ` X ) e. ( _V \ { Z } ) -> X e. W ) ) |
| 20 | 8 19 | biimtrrid | |- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z -> X e. W ) ) |
| 21 | 20 | necon1bd | |- ( ( ph /\ X e. A ) -> ( -. X e. W -> ( F ` X ) = Z ) ) |
| 22 | 21 | impr | |- ( ( ph /\ ( X e. A /\ -. X e. W ) ) -> ( F ` X ) = Z ) |
| 23 | 5 22 | sylan2b | |- ( ( ph /\ X e. ( A \ W ) ) -> ( F ` X ) = Z ) |