This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019) (Proof shortened by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppss.f | |- ( ph -> F : A --> B ) |
|
| suppss.n | |- ( ( ph /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
||
| Assertion | suppss | |- ( ph -> ( F supp Z ) C_ W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss.f | |- ( ph -> F : A --> B ) |
|
| 2 | suppss.n | |- ( ( ph /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
|
| 3 | 1 | ffnd | |- ( ph -> F Fn A ) |
| 4 | 3 | adantl | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> F Fn A ) |
| 5 | simpll | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> F e. _V ) |
|
| 6 | simplr | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> Z e. _V ) |
|
| 7 | elsuppfng | |- ( ( F Fn A /\ F e. _V /\ Z e. _V ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
|
| 8 | 4 5 6 7 | syl3anc | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 9 | eldif | |- ( k e. ( A \ W ) <-> ( k e. A /\ -. k e. W ) ) |
|
| 10 | 2 | adantll | |- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
| 11 | 9 10 | sylan2br | |- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ ( k e. A /\ -. k e. W ) ) -> ( F ` k ) = Z ) |
| 12 | 11 | expr | |- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. A ) -> ( -. k e. W -> ( F ` k ) = Z ) ) |
| 13 | 12 | necon1ad | |- ( ( ( ( F e. _V /\ Z e. _V ) /\ ph ) /\ k e. A ) -> ( ( F ` k ) =/= Z -> k e. W ) ) |
| 14 | 13 | expimpd | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( ( k e. A /\ ( F ` k ) =/= Z ) -> k e. W ) ) |
| 15 | 8 14 | sylbid | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( k e. ( F supp Z ) -> k e. W ) ) |
| 16 | 15 | ssrdv | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( F supp Z ) C_ W ) |
| 17 | 16 | ex | |- ( ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ W ) ) |
| 18 | supp0prc | |- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
|
| 19 | 0ss | |- (/) C_ W |
|
| 20 | 18 19 | eqsstrdi | |- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) C_ W ) |
| 21 | 20 | a1d | |- ( -. ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ W ) ) |
| 22 | 17 21 | pm2.61i | |- ( ph -> ( F supp Z ) C_ W ) |