This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | suppun.g | |- ( ph -> G e. V ) |
|
| Assertion | suppun | |- ( ph -> ( F supp Z ) C_ ( ( F u. G ) supp Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppun.g | |- ( ph -> G e. V ) |
|
| 2 | ssun1 | |- ( `' F " ( _V \ { Z } ) ) C_ ( ( `' F " ( _V \ { Z } ) ) u. ( `' G " ( _V \ { Z } ) ) ) |
|
| 3 | cnvun | |- `' ( F u. G ) = ( `' F u. `' G ) |
|
| 4 | 3 | imaeq1i | |- ( `' ( F u. G ) " ( _V \ { Z } ) ) = ( ( `' F u. `' G ) " ( _V \ { Z } ) ) |
| 5 | imaundir | |- ( ( `' F u. `' G ) " ( _V \ { Z } ) ) = ( ( `' F " ( _V \ { Z } ) ) u. ( `' G " ( _V \ { Z } ) ) ) |
|
| 6 | 4 5 | eqtri | |- ( `' ( F u. G ) " ( _V \ { Z } ) ) = ( ( `' F " ( _V \ { Z } ) ) u. ( `' G " ( _V \ { Z } ) ) ) |
| 7 | 2 6 | sseqtrri | |- ( `' F " ( _V \ { Z } ) ) C_ ( `' ( F u. G ) " ( _V \ { Z } ) ) |
| 8 | 7 | a1i | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( `' F " ( _V \ { Z } ) ) C_ ( `' ( F u. G ) " ( _V \ { Z } ) ) ) |
| 9 | suppimacnv | |- ( ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 10 | 9 | adantr | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 11 | unexg | |- ( ( F e. _V /\ G e. V ) -> ( F u. G ) e. _V ) |
|
| 12 | 11 | adantlr | |- ( ( ( F e. _V /\ Z e. _V ) /\ G e. V ) -> ( F u. G ) e. _V ) |
| 13 | 1 12 | sylan2 | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( F u. G ) e. _V ) |
| 14 | simplr | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> Z e. _V ) |
|
| 15 | suppimacnv | |- ( ( ( F u. G ) e. _V /\ Z e. _V ) -> ( ( F u. G ) supp Z ) = ( `' ( F u. G ) " ( _V \ { Z } ) ) ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( ( F u. G ) supp Z ) = ( `' ( F u. G ) " ( _V \ { Z } ) ) ) |
| 17 | 8 10 16 | 3sstr4d | |- ( ( ( F e. _V /\ Z e. _V ) /\ ph ) -> ( F supp Z ) C_ ( ( F u. G ) supp Z ) ) |
| 18 | 17 | ex | |- ( ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ ( ( F u. G ) supp Z ) ) ) |
| 19 | supp0prc | |- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
|
| 20 | 0ss | |- (/) C_ ( ( F u. G ) supp Z ) |
|
| 21 | 19 20 | eqsstrdi | |- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) C_ ( ( F u. G ) supp Z ) ) |
| 22 | 21 | a1d | |- ( -. ( F e. _V /\ Z e. _V ) -> ( ph -> ( F supp Z ) C_ ( ( F u. G ) supp Z ) ) ) |
| 23 | 18 22 | pm2.61i | |- ( ph -> ( F supp Z ) C_ ( ( F u. G ) supp Z ) ) |