This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The upper bound of a half-open range is greater than or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzouz2 | |- ( K e. ( M ..^ N ) -> N e. ( ZZ>= ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | |- ( K e. ( M ..^ N ) -> K e. ZZ ) |
|
| 2 | elfzoel2 | |- ( K e. ( M ..^ N ) -> N e. ZZ ) |
|
| 3 | elfzolt2 | |- ( K e. ( M ..^ N ) -> K < N ) |
|
| 4 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 5 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 6 | ltle | |- ( ( K e. RR /\ N e. RR ) -> ( K < N -> K <_ N ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N -> K <_ N ) ) |
| 8 | 1 2 7 | syl2anc | |- ( K e. ( M ..^ N ) -> ( K < N -> K <_ N ) ) |
| 9 | 3 8 | mpd | |- ( K e. ( M ..^ N ) -> K <_ N ) |
| 10 | eluz2 | |- ( N e. ( ZZ>= ` K ) <-> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) |
|
| 11 | 1 2 9 10 | syl3anbrc | |- ( K e. ( M ..^ N ) -> N e. ( ZZ>= ` K ) ) |