This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsumcl and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcllem.f | |- ( ph -> F : A --> B ) |
|
| gsumcllem.a | |- ( ph -> A e. V ) |
||
| gsumcllem.z | |- ( ph -> Z e. U ) |
||
| gsumcllem.s | |- ( ph -> ( F supp Z ) C_ W ) |
||
| Assertion | gsumcllem | |- ( ( ph /\ W = (/) ) -> F = ( k e. A |-> Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcllem.f | |- ( ph -> F : A --> B ) |
|
| 2 | gsumcllem.a | |- ( ph -> A e. V ) |
|
| 3 | gsumcllem.z | |- ( ph -> Z e. U ) |
|
| 4 | gsumcllem.s | |- ( ph -> ( F supp Z ) C_ W ) |
|
| 5 | 1 | feqmptd | |- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 6 | 5 | adantr | |- ( ( ph /\ W = (/) ) -> F = ( k e. A |-> ( F ` k ) ) ) |
| 7 | difeq2 | |- ( W = (/) -> ( A \ W ) = ( A \ (/) ) ) |
|
| 8 | dif0 | |- ( A \ (/) ) = A |
|
| 9 | 7 8 | eqtrdi | |- ( W = (/) -> ( A \ W ) = A ) |
| 10 | 9 | eleq2d | |- ( W = (/) -> ( k e. ( A \ W ) <-> k e. A ) ) |
| 11 | 10 | biimpar | |- ( ( W = (/) /\ k e. A ) -> k e. ( A \ W ) ) |
| 12 | 1 4 2 3 | suppssr | |- ( ( ph /\ k e. ( A \ W ) ) -> ( F ` k ) = Z ) |
| 13 | 11 12 | sylan2 | |- ( ( ph /\ ( W = (/) /\ k e. A ) ) -> ( F ` k ) = Z ) |
| 14 | 13 | anassrs | |- ( ( ( ph /\ W = (/) ) /\ k e. A ) -> ( F ` k ) = Z ) |
| 15 | 14 | mpteq2dva | |- ( ( ph /\ W = (/) ) -> ( k e. A |-> ( F ` k ) ) = ( k e. A |-> Z ) ) |
| 16 | 6 15 | eqtrd | |- ( ( ph /\ W = (/) ) -> F = ( k e. A |-> Z ) ) |