This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019) (Revised by AV, 7-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppimacnv | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) = ( `' R " ( _V \ { Z } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( t = s -> ( x R t <-> x R s ) ) |
|
| 2 | 1 | cbvexvw | |- ( E. t x R t <-> E. s x R s ) |
| 3 | breq2 | |- ( s = Z -> ( x R s <-> x R Z ) ) |
|
| 4 | 3 | anbi1d | |- ( s = Z -> ( ( x R s /\ ( x R t <-> t =/= Z ) ) <-> ( x R Z /\ ( x R t <-> t =/= Z ) ) ) ) |
| 5 | bianir | |- ( ( t =/= Z /\ ( x R t <-> t =/= Z ) ) -> x R t ) |
|
| 6 | vex | |- t e. _V |
|
| 7 | breq2 | |- ( y = t -> ( x R y <-> x R t ) ) |
|
| 8 | neeq1 | |- ( y = t -> ( y =/= Z <-> t =/= Z ) ) |
|
| 9 | 7 8 | anbi12d | |- ( y = t -> ( ( x R y /\ y =/= Z ) <-> ( x R t /\ t =/= Z ) ) ) |
| 10 | 6 9 | spcev | |- ( ( x R t /\ t =/= Z ) -> E. y ( x R y /\ y =/= Z ) ) |
| 11 | 10 | ex | |- ( x R t -> ( t =/= Z -> E. y ( x R y /\ y =/= Z ) ) ) |
| 12 | 5 11 | syl | |- ( ( t =/= Z /\ ( x R t <-> t =/= Z ) ) -> ( t =/= Z -> E. y ( x R y /\ y =/= Z ) ) ) |
| 13 | 12 | ex | |- ( t =/= Z -> ( ( x R t <-> t =/= Z ) -> ( t =/= Z -> E. y ( x R y /\ y =/= Z ) ) ) ) |
| 14 | 13 | pm2.43a | |- ( t =/= Z -> ( ( x R t <-> t =/= Z ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 15 | 14 | adantld | |- ( t =/= Z -> ( ( x R Z /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 16 | nne | |- ( -. t =/= Z <-> t = Z ) |
|
| 17 | notbi | |- ( ( x R t <-> t =/= Z ) <-> ( -. x R t <-> -. t =/= Z ) ) |
|
| 18 | bianir | |- ( ( -. t =/= Z /\ ( -. x R t <-> -. t =/= Z ) ) -> -. x R t ) |
|
| 19 | breq2 | |- ( Z = t -> ( x R Z <-> x R t ) ) |
|
| 20 | 19 | eqcoms | |- ( t = Z -> ( x R Z <-> x R t ) ) |
| 21 | pm2.24 | |- ( x R t -> ( -. x R t -> E. y ( x R y /\ y =/= Z ) ) ) |
|
| 22 | 20 21 | biimtrdi | |- ( t = Z -> ( x R Z -> ( -. x R t -> E. y ( x R y /\ y =/= Z ) ) ) ) |
| 23 | 22 | com13 | |- ( -. x R t -> ( x R Z -> ( t = Z -> E. y ( x R y /\ y =/= Z ) ) ) ) |
| 24 | 18 23 | syl | |- ( ( -. t =/= Z /\ ( -. x R t <-> -. t =/= Z ) ) -> ( x R Z -> ( t = Z -> E. y ( x R y /\ y =/= Z ) ) ) ) |
| 25 | 24 | ex | |- ( -. t =/= Z -> ( ( -. x R t <-> -. t =/= Z ) -> ( x R Z -> ( t = Z -> E. y ( x R y /\ y =/= Z ) ) ) ) ) |
| 26 | 17 25 | biimtrid | |- ( -. t =/= Z -> ( ( x R t <-> t =/= Z ) -> ( x R Z -> ( t = Z -> E. y ( x R y /\ y =/= Z ) ) ) ) ) |
| 27 | 26 | com13 | |- ( x R Z -> ( ( x R t <-> t =/= Z ) -> ( -. t =/= Z -> ( t = Z -> E. y ( x R y /\ y =/= Z ) ) ) ) ) |
| 28 | 27 | imp | |- ( ( x R Z /\ ( x R t <-> t =/= Z ) ) -> ( -. t =/= Z -> ( t = Z -> E. y ( x R y /\ y =/= Z ) ) ) ) |
| 29 | 28 | com13 | |- ( t = Z -> ( -. t =/= Z -> ( ( x R Z /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) ) ) |
| 30 | 16 29 | sylbi | |- ( -. t =/= Z -> ( -. t =/= Z -> ( ( x R Z /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) ) ) |
| 31 | 30 | pm2.43i | |- ( -. t =/= Z -> ( ( x R Z /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 32 | 15 31 | pm2.61i | |- ( ( x R Z /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) |
| 33 | 4 32 | biimtrdi | |- ( s = Z -> ( ( x R s /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 34 | vex | |- s e. _V |
|
| 35 | breq2 | |- ( y = s -> ( x R y <-> x R s ) ) |
|
| 36 | neeq1 | |- ( y = s -> ( y =/= Z <-> s =/= Z ) ) |
|
| 37 | 35 36 | anbi12d | |- ( y = s -> ( ( x R y /\ y =/= Z ) <-> ( x R s /\ s =/= Z ) ) ) |
| 38 | 34 37 | spcev | |- ( ( x R s /\ s =/= Z ) -> E. y ( x R y /\ y =/= Z ) ) |
| 39 | 38 | ex | |- ( x R s -> ( s =/= Z -> E. y ( x R y /\ y =/= Z ) ) ) |
| 40 | 39 | adantr | |- ( ( x R s /\ ( x R t <-> t =/= Z ) ) -> ( s =/= Z -> E. y ( x R y /\ y =/= Z ) ) ) |
| 41 | 40 | com12 | |- ( s =/= Z -> ( ( x R s /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 42 | 33 41 | pm2.61ine | |- ( ( x R s /\ ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) |
| 43 | 42 | expcom | |- ( ( x R t <-> t =/= Z ) -> ( x R s -> E. y ( x R y /\ y =/= Z ) ) ) |
| 44 | 43 | exlimiv | |- ( E. t ( x R t <-> t =/= Z ) -> ( x R s -> E. y ( x R y /\ y =/= Z ) ) ) |
| 45 | 44 | com12 | |- ( x R s -> ( E. t ( x R t <-> t =/= Z ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 46 | 45 | exlimiv | |- ( E. s x R s -> ( E. t ( x R t <-> t =/= Z ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 47 | 2 46 | sylbi | |- ( E. t x R t -> ( E. t ( x R t <-> t =/= Z ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 48 | 47 | imp | |- ( ( E. t x R t /\ E. t ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) |
| 49 | 48 | a1i | |- ( ( R e. V /\ Z e. W ) -> ( ( E. t x R t /\ E. t ( x R t <-> t =/= Z ) ) -> E. y ( x R y /\ y =/= Z ) ) ) |
| 50 | 49 | ss2abdv | |- ( ( R e. V /\ Z e. W ) -> { x | ( E. t x R t /\ E. t ( x R t <-> t =/= Z ) ) } C_ { x | E. y ( x R y /\ y =/= Z ) } ) |
| 51 | suppvalbr | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) = { x | ( E. t x R t /\ E. t ( x R t <-> t =/= Z ) ) } ) |
|
| 52 | cnvimadfsn | |- ( `' R " ( _V \ { Z } ) ) = { x | E. y ( x R y /\ y =/= Z ) } |
|
| 53 | 52 | a1i | |- ( ( R e. V /\ Z e. W ) -> ( `' R " ( _V \ { Z } ) ) = { x | E. y ( x R y /\ y =/= Z ) } ) |
| 54 | 50 51 53 | 3sstr4d | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) C_ ( `' R " ( _V \ { Z } ) ) ) |
| 55 | suppimacnvss | |- ( ( R e. V /\ Z e. W ) -> ( `' R " ( _V \ { Z } ) ) C_ ( R supp Z ) ) |
|
| 56 | 54 55 | eqssd | |- ( ( R e. V /\ Z e. W ) -> ( R supp Z ) = ( `' R " ( _V \ { Z } ) ) ) |